Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

cocorepr

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

cocorepr

COCO Dataset cleaning tool

  • 0.1.0
  • PyPI
  • Socket score

Maintainers
1

Cocorepr

A tool to convert COCO datasets between different representations (for now, only Object Detection is supported).

Installation

$ pip install -U cocorepr

Basic usage

$ cocorepr --help                                                                                       
usage: cocorepr [-h] [--in_json_file [IN_JSON_FILE [IN_JSON_FILE ...]]]
                [--in_json_tree [IN_JSON_TREE [IN_JSON_TREE ...]]]
                [--in_crop_tree [IN_CROP_TREE [IN_CROP_TREE ...]]] --out_path
                OUT_PATH --out_format {json_file,json_tree,crop_tree}
                [--seed SEED] [--max_crops_per_class MAX_CROPS_PER_CLASS]
                [--overwrite] [--indent INDENT] [--debug]

Tool for converting datasets in COCO format between different representations

optional arguments:
  -h, --help            show this help message and exit
  --in_json_file [IN_JSON_FILE [IN_JSON_FILE ...]]
                        Path to one or multiple json files storing COCO
                        dataset in `json_file` representation (all json-based
                        datasets will be merged).
  --in_json_tree [IN_JSON_TREE [IN_JSON_TREE ...]]
                        Path to one or multiple directories storing COCO
                        dataset in `json_tree` representation (all json-based
                        datasets will be merged).
  --in_crop_tree [IN_CROP_TREE [IN_CROP_TREE ...]]
                        Path to one or multiple directories storing COCO
                        dataset in `crop_tree` representation (all crop-based
                        datasets will be merged and will overwrite the json-
                        based datasets).
  --out_path OUT_PATH   Path to the output dataset (file or directory: depends
                        on `--out_format`)
  --out_format {json_file,json_tree,crop_tree}
  --seed SEED           Random seed.
  --max_crops_per_class MAX_CROPS_PER_CLASS
                        If set, the tool will randomly select up to this
                        number of crops (annotations) per each class
                        (category) and drop the others.
  --overwrite           If set, will delete the output file/directory before
                        dumping the result dataset.
  --indent INDENT       Indentation in the output json files.
  --debug

This tool converts a dataset between three formats:

  • json file (a single json file) - common ML format,
  • json tree (a set of json chunks) - suitable for Git,
  • crop tree (a set of png crops of the object detection annotations) - used for cleaning the object detection dataset.

While json-based formats are self-contained, crop-based format needs at least one json path in order to reconstruct the dataset:

$ cocorepr \
    --in_crop_tree /path/to/tree  \
    --out_path /tmp/crop_tree \
    --out_format crop_tree
INFO: Arguments: Namespace(debug=False, in_crop_tree=[PosixPath('/path/to/tree')], in_json_file=[], in_json_tree=[], indent=4, out_format='crop_tree', out_path=PosixPath('/tmp/crop_tree'), overwrite=False)
Traceback (most recent call last):
  File "/home/ay/.pyenv/versions/3.7.6/bin/cocorepr", line 33, in <module>
    sys.exit(load_entry_point('cocorepr', 'console_scripts', 'cocorepr')())
  File "/plain/github/nm/cocorepr/cocorepr/main.py", line 66, in main
    raise ValueError(f'Not found base dataset, please specify either of: '
ValueError: Not found base dataset, please specify either of: --in_json_tree / --in_json_file (multiple arguments allowed)

Options --in_json_tree, --in_json_file and --in_crop_tree expect 1 or more path to the specified dataset representation. If multiple values were passed, the datasets will be merged (enforcing all the elements to have unique id fields).

$ cocorepr \
    --in_json_file /tmp/json_file/file1.json /tmp/json_file/file2.json \
    --in_json_tree /tmp/json_tree/dir1 /tmp/json_file/dir2 /tmp/json_file/dir3 \
    --in_crop_tree /tmp/crop_tree/dir1 /tmp/crop_tree/dir2 \
    --out_path /tmp/json_tree \
    --out_format json_tree

The command above will load json_file dataset from /tmp/json_file/file1.json, then load /tmp/json_file/file2.json and merge it with the first one, then load the json_tree from /tmp/json_tree/dir1 and merge it with the previous result, etc. Then it'll load the crop_tree from /tmp/crop_tree/dir1 using meta-info from the previously constructed dataset and merge it with /tmp/crop_tree/dir2. The result will be written in form of json_tree to /tmp/json_tree (if directory exists, the tool will fail unless the --overwrite is specified).

Motivation

This tool was born in Neu.ro when we worked on an ML project for a client who needed a system that would process photos, detect objects and then classify them by one a large number of classes. The client had large volumes of data, but the data was very noisy.

Roughly, our solution comprised two models:

  1. Object Detection (OD) model: trained on a dataset and finding generic objects (similar to COCO: bottle, laptop, bus),
  2. Object Classification (CL) model: fine-tuned on the client's domain (for example: which exactly mark of the bottle, which type of laptop).

While the first model could be generated on a generic dataset, the second problem required large amount of work with the client on cleaning the noisy data and preparing a fine-tuned classification dataset.

For historical reasons, both datasets were collected, cleaned and stored in COCO format. Hopefully, we didn't need to store image blobs -- the client's API enforced their availability and immutability, therefore we could store only image URL and some other metadata (coco_url and id, other fields are optional):

{
    "id": 49428,  // image ID
    "coco_url": "http://images.cocodataset.org/train2017/000000049428.jpg",  // URL of the immutable image blob
    // "license": 6,
    // "file_name": "000000049428.jpg",
    // "height": 427,
    // "width": 640,
    // "date_captured": "2013-11-15 04:30:29",
    // "flickr_url": "http://farm7.staticflickr.com/6014/5923365195_bee5603371_z.jpg"
},

Though COCO format is native fine for OD datasets, it might be bulky for CL datasets, which are concerned on the class of annotations, not images:

{
    "id": 124710,  // annotation ID
    "image_id": 140006,  // image ID in the section "images"
    "category_id": 2,  // class ID in the section "categories"
    "bbox": [496.52, 125.94, 143.48, 113.54],  // crop coordinates in pixels: [x,y,w,h] (from top-left, x=horizontal)
}

In order to train a CL model, we want to have a certain number of "clean" crops per each class (by crop we call a small picture cropped from given image using coordinates of given annotation). In order to facilitate the manual process of choosing the clean crops, we would like them to be sorted into directories grouping them into classes (categories). After the cleaning, we would like to reconstruct this subset of COCO dataset, register it in Git and then use it to train the model. Here comes cocorepr, which was created to automate these conversions between different representations of a COCO dataset.

Below you can find the detailed discussion of the COCO dataset representations.


Representations of COCO dataset

Json file

This is a regular format for a COCO dataset: all the annotations are stored in a single json file:

$ cat examples/coco_chunk/json_file/instances_train2017_chunk3x2.json
{
    "licenses": [
        {
            "url": "http://creativecommons.org/licenses/by-nc-sa/2.0/",
            "id": 1,
            "name": "Attribution-NonCommercial-ShareAlike License"
        },
        ...
    ],
    "info": {
        "description": "COCO 2017 Dataset",
        "url": "http://cocodataset.org",
        "version": "1.0",
        "year": 2017,
        "contributor": "COCO Consortium",
        "date_created": "2017/09/01"
    },
    "categories": [
        {
            "supercategory": "person",
            "id": 1,
            "name": "person"
        },
        ...
    ],
    "images": [
        {
            "license": 6,
            "file_name": "000000049428.jpg",
            "coco_url": "http://images.cocodataset.org/train2017/000000049428.jpg",
            "height": 427,
            "width": 640,
            "date_captured": "2013-11-15 04:30:29",
            "flickr_url": "http://farm7.staticflickr.com/6014/5923365195_bee5603371_z.jpg",
            "id": 49428
        },
        ...
    ],
    "annotations": [
        {
            "image_id": 140006,
            "bbox": [
                496.52,
                125.94,
                143.48,
                113.54
            ],
            "category_id": 2,
            "id": 124710
        },
        ...
    ]
}

This format is used by many ML frameworks as input format, but usually the json tree file is too big to be stored in a Git repository (over 50M), therefore we either need to store it under Git LFS (which does not show the diff, only the hash), or to use another representation that are better adapted for work with Git.

Json tree

This format makes the dataset suitable for Git: it stores each element in a separate json chunk, thus enabling Git to do the diff at the level of individual chunks.

$ cocorepr \
    --in_json_file examples/coco_chunk/json_file/instances_train2017_chunk3x2.json \
    --out_path $TMP \
    --out_format json_tree  # --overwrite
INFO:root:Arguments: Namespace(in_crop_tree_path=None, in_json_path=PosixPath('examples/coco_chunk/json_file/instances_train2017_chunk3x2.json'), out_format='json_tree', out_path=PosixPath('/tmp/json_tree'), overwrite=False)
INFO:root:Loading json file from file: examples/coco_chunk/json_file/instances_train2017_chunk3x2.json
INFO:root:Loaded: images=6, annotations=6, categories=3
INFO:root:Dumping json tree to dir: /tmp/json_tree
INFO:root:[+] Success: json_tree dumped to /tmp/json_tree: ['info.json', 'info', 'categories', 'annotations', 'licenses', 'images']

$ tree /tmp/json_tree
/tmp/json_tree
├── annotations
│   ├── 124710.json
│   ├── 124713.json
│   ├── 131774.json
│   ├── 131812.json
│   ├── 183020.json
│   └── 183030.json
├── categories
│   ├── 1.json
│   ├── 2.json
│   └── 3.json
├── images
│   ├── 117891.json
│   ├── 140006.json
│   ├── 289949.json
│   ├── 49428.json
│   ├── 537548.json
│   └── 71345.json
├── info
├── info.json
└── licenses
    ├── 1.json
    ├── 2.json
    ├── 3.json
    ├── 4.json
    ├── 5.json
    ├── 6.json
    ├── 7.json
    └── 8.json

5 directories, 24 files

Crop tree

This format is used to facilitate the process of manual cleaning the CL dataset: the directory crop contains the list of classes named as {sanitized-class-name}--{class-id} so that the classes that have similar name (for example the classes of the cars Bugatti Veyron EB 16.4 and Bugatti Veyron 16.4 Grand Sport will be named as Bugatti_Veyron_EB_16_4--103209 and Bugatti_Veyron_16_4_Grand_Sport--376319, which makes sense since the directories are usually sorted alphabetically). The human then goes through the pictures of crops, deletes the "dirty" ones and makes sure that each class contains enough of "clean" crops. Then, we can reconstruct the dataset in the json tree representation and register it in Git.

$ cocorepr \
    --in_json_file examples/coco_chunk/json_file/instances_train2017_chunk3x2.json \
    --out_path /tmp/crop_tree \
    --out_format crop_tree
INFO:root:Arguments: Namespace(in_crop_tree_path=None, in_json_path=PosixPath('examples/coco_chunk/json_file/instances_train2017_chunk3x2.json'), indent=4, out_format='crop_tree', out_path=PosixPath('/tmp/crop_tree'), overwrite=False)
INFO:root:Loading json file from file: examples/coco_chunk/json_file/instances_train2017_chunk3x2.json
INFO:root:Loaded: images=6, annotations=6, categories=3
INFO:root:Detected input dataset type: json_file: examples/coco_chunk/json_file/instances_train2017_chunk3x2.json
INFO:root:Dumping crop tree to dir: /tmp/crop_tree
Processing images: 100%|                                           | 6/6 [00:03<00:00,  1.60it/s]
INFO:root:[+] Success: crop_tree dumped to /tmp/crop_tree: ['crops', 'images']

$ tree /tmp/crop_tree
/tmp/crop_tree
├── crops
│   ├── bicycle--2
│   │   ├── 124710.png
│   │   └── 124713.png
│   ├── car--3
│   │   ├── 131774.png
│   │   └── 131812.png
│   └── person--1
│       ├── 183020.png
│       └── 183030.png
└── images
    ├── 000000049428.jpg
    ├── 000000071345.jpg
    ├── 000000117891.jpg
    ├── 000000140006.jpg
    ├── 000000289949.jpg
    └── 000000537548.jpg

5 directories, 12 files

Now, this tree can be manually cleaned by a human ("dirty" crops deleted) and we'll be able to re-construct the dataset.

Showcase: single iteration of the dataset cleaning process

Our setup:

  • Our dataset stored in git repository /project/my-dataset in the json_tree representation. This dataset suffers from incompleteness: some categories lack "clean" annotations.
  • The customer has provided us with additional data as two json_files: /inputs/annotations-new-1.json and /inputs/annotations-new-2.json.
  • We would like to merge these two datasets into a crop_tree representation, clean it manually, and then re-construct a new dataset and save it in-place in our git repository.

Step 1: merge datasets json_tree + json_filex2 -> crop_tree:

cocorepr \
    --in_json_tree /project/my-dataset \
    --in_json_file /inputs/annotations-new-1.json /inputs/annotations-new-2.json \
    --out_path /temp/my-dataset-crops \
    --out_format crop_tree \
    --overwrite \
    --debug
ls /temp/my-dataset-crops

Step 2: manually clean the crop_tree in /temp/my-dataset-crops

Step 3: re-construct the cleaned dataset:

# first, verify that your original dataset has no uncommitted changes (they'll be lost)
cd /project/my-dataset
git diff-index --quiet HEAD

cocorepr \
    --in_crop_tree /temp/my-dataset-crops \
    --in_json_tree /project/my-dataset \
    --out_path /project/my-dataset \
    --out_format json_tree \
    --overwrite \
    --debug

Now you can commit the changes of your dataset /project/my-dataset.

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc