#############################
COLORMAP documentation
#############################
Please see : http://colormap.readthedocs.io/ for an up-to-date documentation.
.. image:: https://badge.fury.io/py/colormap.svg
:target: https://pypi.python.org/pypi/colormap
.. image:: https://github.com/cokelaer/colormap/actions/workflows/ci.yml/badge.svg?branch=main
:target: https://github.com/cokelaer/colormap/actions/workflows/ci.yml
.. image:: https://coveralls.io/repos/cokelaer/colormap/badge.png?branch=main
:target: https://coveralls.io/r/cokelaer/colormap?branch=main
.. image:: https://static.pepy.tech/personalized-badge/colormap?period=month&units=international_system&left_color=black&right_color=orange&left_text=Downloads
:target: https://pepy.tech/project/colormap
.. image:: http://readthedocs.org/projects/colormap/badge/?version=main
:target: http://colormap.readthedocs.org/en/latest/?badge=main
:alt: Documentation Status
:version: Python 3.9, 3.10, 3.11, 3.12
:contributions: Please join https://github.com/cokelaer/colormap
:issues: Please use https://github.com/cokelaer/colormap/issues
:notebook: Please see https://github.com/cokelaer/colormap/tree/main/notebooks
What is it ?
################
colormap package provides utilities to convert colors between
RGB, HEX, HLS, HUV and a framework to easily create and build colormaps for matplotlib. All
matplotlib colormaps and some R colormaps are also available altogether. The
plot_colormap method (see below) is handy to quickly pick up a colormaps and
the test_colormap is useful to see a live version of the new colormap.
Installation
###################
::
pip install colormap
Usage examples
###############
- convert RGB to HEX:
::
from colormap import rgb2hex, hex2rgb
hex_color = rgb2hex(255, 0, 0) # Red color in HEX
print(hex_color) # Output: "#ff0000"
rgb_color = hex2rgb("#ff0000") # Convert back to RGB
print(rgb_color) # Output: (255, 0, 0)
2. Generate a Custom colormap:
Create your own colormap. For instance, from red to green colors with intermediate color as
whitish (diverging map from red to green)::
from colormap import Colormap
c = Colormap()
mycmap = c.cmap( {'red':[1,1,0], 'green':[0,1,.39], 'blue':[0,1,0]})
cmap = c.test_colormap(mycmap)
Even simpler if the colormap is linear using color's name::
from colormap import Colormap
c = Colormap()
mycmap = c.cmap_linear('red', 'white', 'green(w3c)')
cmap = c.test_colormap(mycmap)
.. image:: https://colormap.readthedocs.io/en/latest/_images/quickstart-6.png
:width: 50%
:align: center
- Visualise existing matplotlib colormap:
::
from colormap import plot_colormap, plot_category
plot_colormap("viridis")
Using the Colormap instance, you can see all valid names using::
c.colormaps
Matplotlib is very well known in the PYthon ecosystem and has categorised colormaps into categories such as a
"diverging". To visualise all of them::
plot_category('diverging')
.. image:: https://colormap.readthedocs.io/en/latest/_images/quickstart-4.png
:width: 50%
:align: center
Other sets of colormaps are : sequentials, sequentials2, misc, diverging, qualitative
See online documentation for details: http://colormap.readthedocs.io/
changelog
#########
========= ================================================================================
Version Description
========= ================================================================================
1.3.0 * support for poetry 2.0 thanks to @cjwatson PR#26
* Slightly better doc
1.2.0
1.1.0 * switch to pyproject. remove easydev dependency. compat for python 3.11 and
3.12
1.0.6 * Fix a matplotlib deprecation
* Fix RTD documentation
1.0.5 * remove Python3.6 and added Python3.10 to CI action
* Fix issue in setup reported in https://github.com/cokelaer/colormap/pull/14
* add requirements in MANIFEST
* applied black on all files
========= ================================================================================