Security News
Research
Data Theft Repackaged: A Case Study in Malicious Wrapper Packages on npm
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
This is a PyPi installable package of lllyasviel's ControlNet Annotators
The code is copy-pasted from the respective folders in https://github.com/lllyasviel/ControlNet/tree/main/annotator and connected to the 🤗 Hub.
All credit & copyright goes to https://github.com/lllyasviel .
pip install -U controlnet-aux
To support DWPose which is dependent on MMDetection, MMCV and MMPose
pip install -U openmim
mim install mmengine
mim install "mmcv>=2.0.1"
mim install "mmdet>=3.1.0"
mim install "mmpose>=1.1.0"
You can use the processor class, which can load each of the auxiliary models with the following code
import requests
from PIL import Image
from io import BytesIO
from controlnet_aux.processor import Processor
# load image
url = "https://huggingface.co/lllyasviel/sd-controlnet-openpose/resolve/main/images/pose.png"
response = requests.get(url)
img = Image.open(BytesIO(response.content)).convert("RGB").resize((512, 512))
# load processor from processor_id
# options are:
# ["canny", "depth_leres", "depth_leres++", "depth_midas", "depth_zoe", "lineart_anime",
# "lineart_coarse", "lineart_realistic", "mediapipe_face", "mlsd", "normal_bae", "normal_midas",
# "openpose", "openpose_face", "openpose_faceonly", "openpose_full", "openpose_hand",
# "scribble_hed, "scribble_pidinet", "shuffle", "softedge_hed", "softedge_hedsafe",
# "softedge_pidinet", "softedge_pidsafe", "dwpose"]
processor_id = 'scribble_hed'
processor = Processor(processor_id)
processed_image = processor(img, to_pil=True)
Each model can be loaded individually by importing and instantiating them as follows
from PIL import Image
import requests
from io import BytesIO
from controlnet_aux import HEDdetector, MidasDetector, MLSDdetector, OpenposeDetector, PidiNetDetector, NormalBaeDetector, LineartDetector, LineartAnimeDetector, CannyDetector, ContentShuffleDetector, ZoeDetector, MediapipeFaceDetector, SamDetector, LeresDetector, DWposeDetector
# load image
url = "https://huggingface.co/lllyasviel/sd-controlnet-openpose/resolve/main/images/pose.png"
response = requests.get(url)
img = Image.open(BytesIO(response.content)).convert("RGB").resize((512, 512))
# load checkpoints
hed = HEDdetector.from_pretrained("lllyasviel/Annotators")
midas = MidasDetector.from_pretrained("lllyasviel/Annotators")
mlsd = MLSDdetector.from_pretrained("lllyasviel/Annotators")
open_pose = OpenposeDetector.from_pretrained("lllyasviel/Annotators")
pidi = PidiNetDetector.from_pretrained("lllyasviel/Annotators")
normal_bae = NormalBaeDetector.from_pretrained("lllyasviel/Annotators")
lineart = LineartDetector.from_pretrained("lllyasviel/Annotators")
lineart_anime = LineartAnimeDetector.from_pretrained("lllyasviel/Annotators")
zoe = ZoeDetector.from_pretrained("lllyasviel/Annotators")
sam = SamDetector.from_pretrained("ybelkada/segment-anything", subfolder="checkpoints")
mobile_sam = SamDetector.from_pretrained("dhkim2810/MobileSAM", model_type="vit_t", filename="mobile_sam.pt")
leres = LeresDetector.from_pretrained("lllyasviel/Annotators")
teed = TEEDdetector.from_pretrained("fal-ai/teed", filename="5_model.pth")
anyline = AnylineDetector.from_pretrained(
"TheMistoAI/MistoLine", filename="MTEED.pth", subfolder="Anyline"
)
# specify configs, ckpts and device, or it will be downloaded automatically and use cpu by default
# det_config: ./src/controlnet_aux/dwpose/yolox_config/yolox_l_8xb8-300e_coco.py
# det_ckpt: https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_l_8x8_300e_coco/yolox_l_8x8_300e_coco_20211126_140236-d3bd2b23.pth
# pose_config: ./src/controlnet_aux/dwpose/dwpose_config/dwpose-l_384x288.py
# pose_ckpt: https://huggingface.co/wanghaofan/dw-ll_ucoco_384/resolve/main/dw-ll_ucoco_384.pth
import torch
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
dwpose = DWposeDetector(det_config=det_config, det_ckpt=det_ckpt, pose_config=pose_config, pose_ckpt=pose_ckpt, device=device)
# instantiate
canny = CannyDetector()
content = ContentShuffleDetector()
face_detector = MediapipeFaceDetector()
lineart_standard = LineartStandardDetector()
# process
processed_image_hed = hed(img)
processed_image_midas = midas(img)
processed_image_mlsd = mlsd(img)
processed_image_open_pose = open_pose(img, hand_and_face=True)
processed_image_pidi = pidi(img, safe=True)
processed_image_normal_bae = normal_bae(img)
processed_image_lineart = lineart(img, coarse=True)
processed_image_lineart_anime = lineart_anime(img)
processed_image_zoe = zoe(img)
processed_image_sam = sam(img)
processed_image_leres = leres(img)
processed_image_teed = teed(img, detect_resolution=1024)
processed_image_anyline = anyline(img, detect_resolution=1280)
processed_image_canny = canny(img)
processed_image_content = content(img)
processed_image_mediapipe_face = face_detector(img)
processed_image_dwpose = dwpose(img)
processed_image_lineart_standard = lineart_standard(img, detect_resolution=1024)
In order to maintain the image aspect ratio, detect_resolution
, image_resolution
and images sizes need to be using multiple of 64
.
FAQs
Auxillary models for controlnet
We found that controlnet-aux demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 2 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Research
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
Research
Security News
Attackers used a malicious npm package typosquatting a popular ESLint plugin to steal sensitive data, execute commands, and exploit developer systems.
Security News
The Ultralytics' PyPI Package was compromised four times in one weekend through GitHub Actions cache poisoning and failure to rotate previously compromised API tokens.