Security News
Bun 1.2 Released with 90% Node.js Compatibility and Built-in S3 Object Support
Bun 1.2 enhances its JavaScript runtime with 90% Node.js compatibility, built-in S3 and Postgres support, HTML Imports, and faster, cloud-first performance.
CReM is an open-source Python framework to generate chemical structures using a fragment-based approach.
The main idea behind is similar to matched molecular pairs considering context that fragments in the identical context are interchangeable. Therefore, one can create a database of interchangeable fragments and use it for generation of chemically valid structures.
Features:
Limitations and known issues
https://crem.readthedocs.io/en/latest/
To play with a tool online.
https://crem.imtm.cz/
Several command line utilities will be installed to create fragment databases and crem
module will become available in Python imports to generate structures.
From pypi package
pip install crem
Manually from repository
git clone https://github.com/DrrDom/crem
cd crem
python3 setup.py sdist bdist_wheel
pip install dist/crem-0.1-py3-none-any.whl
Uninstall
pip uninstall crem
crem
requires rdkit>=2017.09
. To run the guacamol test guacamol
should be installed.
This step is required if you want to generate a custom fragment database. You can download precompiled databases obtained by fragmentation of the whole ChEMBL by links provided on this page - http://www.qsar4u.com/pages/crem.php.
For convenience there is the bash script crem_create_frag_db.sh which includes all steps below. It takes three positional arguments: input file with SMILES, output directory where intermediate files and a final database will be stored and number of CPUs to use (this is optional, default value is 1).
crem_create_frag_db.sh input.smi fragdb_dir 32
Fragmentation of input structures:
fragmentation -i input.smi -o frags.txt -c 32 -v
Convert fragments to standardized representation of a core and a context of a given radius:
frag_to_env -i frags.txt -o r3.txt -r 3 -c 32 -v
Remove duplicated lines in the output file and count frequency of occurrence of fragemnt-context pairs. These (sort
and uniq
) are bash
utilities but since Win10 is Linux-friendly that should not be a big issue for Win users to execute them
sort r3.txt | uniq -c > r3_c.txt
Create DB and import the file to a database table
env_to_db -i r3_c.txt -o fragments.db -r 3 -c -v
Last three steps should be executed for each radius. All tables can be stored in the same database.
Import necessary functions from the main module
from crem.crem import mutate_mol, grow_mol, link_mols
from rdkit import Chem
Create a molecute and mutate it. Only one heavy atom will be substituted. Default radius is 3.
m = Chem.MolFromSmiles('c1cc(OC)ccc1C') # methoxytoluene
mols = list(mutate_mol(m, db_name='replacements.db', max_size=1))
output example
['CCc1ccc(C)cc1',
'CC#Cc1ccc(C)cc1',
'C=C(C)c1ccc(C)cc1',
'CCCc1ccc(C)cc1',
'CC=Cc1ccc(C)cc1',
'CCCCc1ccc(C)cc1',
'CCCOc1ccc(C)cc1',
'CNCCc1ccc(C)cc1',
'COCCc1ccc(C)cc1',
...
'Cc1ccc(C(C)(C)C)cc1']
Add hydrogens to the molecule to mutate hydrogens as well
mols = list(mutate_mol(Chem.AddHs(m), db_name='replacements.db', max_size=1))
output
['CCc1ccc(C)cc1',
'CC#Cc1ccc(C)cc1',
'C=C(C)c1ccc(C)cc1',
'CCCc1ccc(C)cc1',
'Cc1ccc(C(C)C)cc1',
'CC=Cc1ccc(C)cc1',
...
'COc1ccc(C)cc1C',
'C=Cc1cc(C)ccc1OC',
'COc1ccc(C)cc1Cl',
'COc1ccc(C)cc1CCl']
Grow molecule. Only hydrogens will be replaced. Hydrogens should not be added explicitly.
mols = list(grow_mol(m, db_name='replacements.db'))
output
['COc1ccc(C)c(Br)c1',
'COc1ccc(C)c(C)c1',
'COc1ccc(C)c(Cl)c1',
'COc1ccc(C)c(OC)c1',
'COc1ccc(C)c(N)c1',
...
'COc1ccc(CCN)cc1']
Create the second molecule and link it to toluene
m2 = Chem.MolFromSmiles('NCC(=O)O') # glycine
mols = list(link_mols(m, m2, db_name='replacements.db'))
output
['Cc1ccc(OCC(=O)NCC(=O)O)cc1',
'Cc1ccc(OCCOC(=O)CN)cc1',
'COc1ccc(CC(=N)NCC(=O)O)cc1',
'COc1ccc(CC(=O)NCC(=O)O)cc1',
'COc1ccc(CC(=S)NCC(=O)O)cc1',
'COc1ccc(CCOC(=O)CN)cc1']
You can vary the size of a linker and specify the distance between two attachment points in a linking fragment. There are many other arguments available in these functions, look at their docstrings for details.
An example of a filtering function which will keep only fragments containing a specific atom to be chosen for replacing.
from collections import defaultdict
from functools import partial
from rdkit import Chem
def filter_function(row_ids, cur, radius, atom_number):
"""
The first three arguments should be always the same as shown in the example. These parameters will be passed to a function from a main function, e.g. from mutate_mol. All other arguments are user-defined. The function should return the list of row ids of fragments which will be used for replacing.
:param row_id: a list of row ids from CReM database of those fragments which satisfy other selection criteria
:param cur: cursor of CReM database
:param radius: radius of a context
:param atom_number: an atomic number, fragments with this number will be discarded
:return list of remaining row ids
"""
# this part may be kept intact, it collects from DB SMILES of fragments with given row ids
# since fragments may occur multiple times (due to different contexts) the results are collected in a dict
if not row_ids:
return []
batch_size = 32000 # SQLite has a limit on a number of passed values to a query
row_ids = list(row_ids)
smis = defaultdict(list) # {smi_1: [rowid_1, rowid_5, ...], ...}
for start in range(0, len(row_ids), batch_size):
batch = row_ids[start:start + batch_size]
sql = f"SELECT rowid, core_smi FROM radius{radius} WHERE rowid IN ({','.join('?' * len(batch))})"
for i, smi in cur.execute(sql, batch).fetchall():
smis[smi].append(i)
output_row_ids = []
for smi, ids in smis.items():
for a in Chem.MolFromSmiles(smi).GetAtoms():
if a.GetAtomicNum() == atom_number:
output_row_ids.extend(ids)
return output_row_ids
# only F-containing fragments will be chosen for replacing
mol = Chem.MolFromSmiles('c1ccccc1C')
mols = mutate_mol(mol, db_name='replacements.db', filter_func=partial(filter_function, atom_number=9), max_size=1, max_inc=3)
output
['Fc1ccccc1',
'FC(F)(F)c1ccccc1',
'FC(F)Oc1ccccc1',
'FC(F)Sc1ccccc1']
If not all possible derivatives are necessary to generate a user may limit the number of returned compounds by max_replacements
argument which enable uniform sampling of a desired number of molecules. To enable custom sampling and bias selection to more desired chemotypes there is an argument sample_func
which takes a function implementing the selection. This function should take four necessary arguments: row_ids (list or set of row_ids from the fragment database), cursor of that fragment database, radius (int) and the number of returned items (int). An example of such a function is implemented in utils
module and showed below. Other biases can be introduced via this option. Please not, using of complex sampling functions may slow down structure generation.
def sample_csp3(row_ids, cur, radius, n):
"""
Performs random selection of fragments proportionally to a squared fraction of sp3 carbon atoms.
:param row_ids: the list of row ids of fragments to consider
:param cur: cursor to the fragment database
:param radius: context radius
:param n: the number of fragments to select
:return: the list of row ids of selected fragments
"""
d = defaultdict(list)
for rowid, core_smi, _, _ in _get_replacements(cur, radius, row_ids):
d[core_smi].append(rowid)
smis = list(d.keys())
values = [rdMolDescriptors.CalcFractionCSP3(Chem.MolFromSmiles(smi)) ** 2 for smi in smis]
values = [v + 1e-8 for v in values]
values = np.array(values) / sum(values)
selected_smiles = np.random.choice(smis, n, replace=False, p=values).tolist()
ids = []
for smi in selected_smiles:
ids.extend(d[smi])
ids = random.sample(ids, n)
return ids
Example of sample_func
application. F atom is replaced and 10 derivatives is returned biased by the fraction of sp3 carbons and not.
m = Chem.MolFromSmiles('c1ccccc1F')
res = list(mutate_mol(m, 'replacements_sa2_f5.db',
radius=3, min_inc=0, max_inc=10, max_replacements=10,
replace_ids=[6]))
values = sorted(round(rdMolDescriptors.CalcFractionCSP3(Chem.MolFromSmiles(smi)), 4) for smi in res)
print(res)
print(values)
res = list(mutate_mol(m, 'replacements_sa2_f5.db',
radius=3, min_inc=0, max_inc=10, max_replacements=10,
replace_ids=[6], sample_func=sample_csp3))
values = sorted(round(rdMolDescriptors.CalcFractionCSP3(Chem.MolFromSmiles(smi)), 4) for smi in res)
print(res)
print(values)
output
# uniform sampling
['c1ccc(-c2ccc(-c3csnn3)cc2)cc1', 'c1ccc(COc2cccnc2)cc1', 'CCCc1ccc(OCc2ccccc2)cc1', 'CC(C)(O)C(=O)NCCc1ccccc1', 'CN(C)C(=O)CNC(=O)OCc1ccccc1', 'COc1ccc(-c2ccccc2)cc1C(N)=O', 'Fc1ccccc1-c1ccccc1', 'Nc1cccnc1Sc1ccccc1', 'O=C(Nc1ccc(F)c(F)c1)c1ccccc1', 'O=C(COC(=O)c1ccco1)c1ccccc1']
[0.0, 0.0, 0.0, 0.0, 0.0714, 0.0769, 0.0833, 0.25, 0.3333, 0.4167]
# sampling biased by the fraction of sp3 carbons
['c1ccc(CNCc2ccncc2)cc1', 'Cc1cccc(CSc2ccccc2)n1', 'CC(=Cc1ccccc1)CN1CCN(C)CC1', 'CC(C)N(CCOc1ccccc1)C(C)C', 'CCN(CCC#N)C(=O)Nc1ccccc1', 'CSCc1ccccc1', 'O=C(Cc1ccccc1)NCCc1ccoc1', 'O=C(CCc1ccccc1)NC1CCCCC1', 'O=C(CN1CCCC1)NCCc1ccccc1', 'O=C(CSc1ccccc1)NC1CC1']
[0.1538, 0.1538, 0.2143, 0.25, 0.3333, 0.3636, 0.4667, 0.5, 0.5333, 0.5714]
In the latter case there are molecules having the greater fraction of sp3-carbon atoms.
For convenience there is a function enumerate_compounds
in utils
module (added in version 0.2.6). It performs iterative growing (scaffold decoration) or mutation (analog enumeration) of a supplied molecule. More details are in docstring of the function.
Example. Enumerate derivatives of 1-chloro-3-methylbenzene at positions 2 and 4 of the ring and at the methyl group at the same time. In this case one should choose scaffold
mode, 3 iterations, specify atom ids (0-based indices) where fragments can be attached and set protect_added_frag=True
to restrict enumeration only to selected positions.
from crem.utils import enumerate_compounds
mol = Chem.MolFromMolBlock("""
Mrv1922 05242309182D
8 8 0 0 0 0 999 V2000
-3.2813 1.3161 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
-3.9957 0.9036 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
-3.9957 0.0786 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
-3.2813 -0.3339 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
-2.5668 0.0786 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
-2.5668 0.9036 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
-3.2813 -1.1589 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
-1.8523 1.3161 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0
1 2 1 0 0 0 0
2 3 2 0 0 0 0
3 4 1 0 0 0 0
4 5 2 0 0 0 0
5 6 1 0 0 0 0
1 6 2 0 0 0 0
4 7 1 0 0 0 0
6 8 1 0 0 0 0
M END
""")
mols = enumerate_compounds(mol, 'replacements_sa2.db', mode='scaffold', n_iterations=3,
radius=3, max_replacements=2, replace_ids=[2,4,6], protect_added_frag=True,
return_smi=True)
output
['COc1c(C)cccc1Cl',
'Cc1cc(Cl)ccc1Cl',
'COc1ccc(Cl)c(OC)c1C',
'COc1c(Cl)cccc1CF',
'Cc1c(Cl)ccc(Cl)c1C',
'CSCc1cc(Cl)ccc1Cl',
'COc1ccc(Cl)c(OC)c1CC#N',
'COCc1c(OC)ccc(Cl)c1OC',
'COc1c(Cl)cccc1C(F)F',
'COc1c(Cl)ccc(CO)c1CF',
'Cc1c(Cl)ccc(Cl)c1CC#N',
'Cc1c(Cl)ccc(Cl)c1CCN',
'CSCc1c(Cl)ccc(Cl)c1C',
'CSCc1c(Cl)ccc(Cl)c1Cl']
All functions have an argument ncores
and can make mupltile replacement in one molecule in parallel. If you want to process several molecules in parallel you have to write your own code. However, the described functions are generators and cannot be used with multiprocessing
module. Therefore, three complementary functions mutate_mol2
, grow_mol2
and link_mols2
were created. They return the list with results and can be pickled and used with multiprocessing.Pool
or other tools.
Example:
from multiprocessing import Pool
from functools import partial
from crem.crem import mutate_mol2
from rdkit import Chem
p = Pool(2)
input_smi = ['c1ccccc1N', 'NCC(=O)OC', 'NCCCO']
input_mols = [Chem.MolFromSmiles(s) for s in input_smi]
res = list(p.imap(partial(mutate_mol2, db_name='replacements.db', max_size=1), input_mols))
res
would be a list of lists with SMILES of generated molecules
task | SMILES LSTM* | SMILES GA* | Graph GA* | Graph MCTS* | CReM |
---|---|---|---|---|---|
Celecoxib rediscovery | 1.000 | 0.732 | 1.000 | 0.355 | 1.000 |
Troglitazone rediscovery | 1.000 | 0.515 | 1.000 | 0.311 | 1.000 |
Thiothixene rediscovery | 1.000 | 0.598 | 1.000 | 0.311 | 1.000 |
Aripiprazole similarity | 1.000 | 0.834 | 1.000 | 0.380 | 1.000 |
Albuterol similarity | 1.000 | 0.907 | 1.000 | 0.749 | 1.000 |
Mestranol similarity | 1.000 | 0.79 | 1.000 | 0.402 | 1.000 |
C11H24 | 0.993 | 0.829 | 0.971 | 0.410 | 0.966 |
C9H10N2O2PF2Cl | 0.879 | 0.889 | 0.982 | 0.631 | 0.940 |
Median molecules 1 | 0.438 | 0.334 | 0.406 | 0.225 | 0.371 |
Median molecules 2 | 0.422 | 0.38 | 0.432 | 0.170 | 0.434 |
Osimertinib MPO | 0.907 | 0.886 | 0.953 | 0.784 | 0.995 |
Fexofenadine MPO | 0.959 | 0.931 | 0.998 | 0.695 | 1.000 |
Ranolazine MPO | 0.855 | 0.881 | 0.92 | 0.616 | 0.969 |
Perindopril MPO | 0.808 | 0.661 | 0.792 | 0.385 | 0.815 |
Amlodipine MPO | 0.894 | 0.722 | 0.894 | 0.533 | 0.902 |
Sitagliptin MPO | 0.545 | 0.689 | 0.891 | 0.458 | 0.763 |
Zaleplon MPO | 0.669 | 0.413 | 0.754 | 0.488 | 0.770 |
Valsartan SMARTS | 0.978 | 0.552 | 0.990 | 0.04 | 0.994 |
Deco Hop | 0.996 | 0.970 | 1.000 | 0.590 | 1.000 |
Scaffold Hop | 0.998 | 0.885 | 1.000 | 0.478 | 1.000 |
total score | 17.341 | 14.398 | 17.983 | 9.011 | 17.919 |
BSD-3
CReM: chemically reasonable mutations framework for structure generation
Pavel Polishchuk
Journal of Cheminformatics 2020, 12, (1), 28
https://doi.org/10.1186/s13321-020-00431-w
Control of Synthetic Feasibility of Compounds Generated with CReM
Pavel Polishchuk
Journal of Chemical Information and Modeling 2020, 60, 6074-6080
https://dx.doi.org/10.1021/acs.jcim.0c00792
FAQs
CReM: chemically reasonable mutations framework
We found that crem demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Bun 1.2 enhances its JavaScript runtime with 90% Node.js compatibility, built-in S3 and Postgres support, HTML Imports, and faster, cloud-first performance.
Security News
Biden's executive order pushes for AI-driven cybersecurity, software supply chain transparency, and stronger protections for federal and open source systems.
Security News
Fluent Assertions is facing backlash after dropping the Apache license for a commercial model, leaving users blindsided and questioning contributor rights.