New Case Study:See how Anthropic automated 95% of dependency reviews with Socket.Learn More
Socket
Sign inDemoInstall
Socket

curated-transformers

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

curated-transformers

A PyTorch library of transformer models and components

  • 2.0.1
  • PyPI
  • Socket score

Maintainers
1

Curated Transformers

Documentation Status pypi Version

State-of-the-art transformers, brick by brick

Curated Transformers is a transformer library for PyTorch. It provides state-of-the-art models that are composed from a set of reusable components. The stand-out features of Curated Transformer are:

Curated Transformers has been production-tested by Explosion and will be used as the default transformer implementation in spaCy 3.7.

🧰 Supported Model Architectures

Supported encoder-only models:

  • ALBERT
  • BERT
  • CamemBERT
  • RoBERTa
  • XLM-RoBERTa

Supported decoder-only models:

  • Falcon
  • GPT-NeoX
  • Llama 1/2
  • MPT

Generator wrappers:

  • Dolly v2
  • Falcon
  • Llama 1/2
  • MPT

All types of models can be loaded from Huggingface Hub.

spaCy integration for curated transformers is provided by the spacy-curated-transformers package.

⏳ Install

pip install curated-transformers

CUDA support

The default Linux build of PyTorch is built with CUDA 11.7 support. You should explicitly install a CUDA build in the following cases:

  • If you want to use Curated Transformers on Windows.
  • If you want to use Curated Transformers on Linux with Ada-generation GPUs. The standard PyTorch build supports Ada GPUs, but you can get considerable performance improvements by installing PyTorch with CUDA 11.8 support.

In both cases, you can install PyTorch with:

pip install torch --index-url https://download.pytorch.org/whl/cu118

🏃‍♀️ Usage Example

>>> import torch
>>> from curated_transformers.generation import AutoGenerator, GreedyGeneratorConfig
>>> generator = AutoGenerator.from_hf_hub(name="tiiuae/falcon-7b-instruct", device=torch.device("cuda"))
>>> generator(["What is Python in one sentence?", "What is Rust in one sentence?"], GreedyGeneratorConfig())
['Python is a high-level programming language that is easy to learn and widely used for web development, data analysis, and automation.',
 'Rust is a programming language that is designed to be a safe, concurrent, and efficient replacement for C++.']

You can find more usage examples in the documentation. You can also find example programs that use Curated Transformers in the examples directory.

📚 Documentation

You can read more about how to use Curated Transformers here:

🗜️ Quantization

curated-transformers supports dynamic 8-bit and 4-bit quantization of models by leveraging the bitsandbytes library.

Use the quantization variant to automatically install the necessary dependencies:

pip install curated-transformers[quantization]

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc