Security News
Fluent Assertions Faces Backlash After Abandoning Open Source Licensing
Fluent Assertions is facing backlash after dropping the Apache license for a commercial model, leaving users blindsided and questioning contributor rights.
Damoov is a leading telematics platform leveraging smartphone capabilities to capture and analyze driving behaviors. Our Python SDK is designed to enable developers to easily integrate and harness the power of Damoov's robust telematics data.
Changelog version 0.9.7 Release date 12.01.2025
version 0.9.6 Release data 08.09.2024
version 0.9.5 Release data 18.07.2024
version 0.9.4 Release data 17.06.2024
version 0.9.3 Release data 11.06.2024
version 0.9.2 Release data ____
version 0.9.1 Release date December 28, 2023
version 0.9.0 Release date December 14, 2023
version 0.8.0 Release date November 27, 2023
version 0.7.7 Release date 13/11/2023:
version 0.7.6 Release date 01/11/2023:
version 0.7.5 Release date 25/10/2023:
version 0.7.4 Release date 20/10/2023:
Security Enhancements: JWT Token Storage:
Other Updates:
Install the SDK using pip:
pip install damoov-admin
Authentication:
from damoov_admin import statistics, trips, users
email = ""
password = ''
#Generate your admin credential in Datahub (https://docs.damoov.com/docs/datahub)
data = <module>.DamoovAuth(email=email, password=password)
Detailed documentation is available at Developer Portal.
If you have any feedback or need support, please contact us at hellp@damoov.com.
Damoov's Python SDK enables seamless integration with our leading telematics platform. Harness the power of smartphones to capture and analyze driving behaviors. This repo provides tools to easily tap into driving insights, safety metrics, and performance data. Drive smarter with Damoov.
The Statistics
module provides a comprehensive suite of functionalities to gather various statistics data, ranging from daily user scores to unique tags. Below is a breakdown of its methods and their usage:
If you haven't already, install the Damoov-Admin SDK for Python.
pip install damoov-admin
Begin by importing the Statistics module and finalizing the authentication process.
from damoov_admin import statistics
email="your_admin_creds@auth.me"
password="YOUR PASSWORD"
stats = statistics.DamoovAuth(email=email, password=password)
user_id
: ID of the user, also known as a DeviceTokenstart_date
: Start date in format YYYY-MM-DDTHH:MM:SS
end_date
: End date in format YYYY-MM-DDTHH:MM:SS
tag
: ['Tag1', '...', 'TagX']user_daily_statistics
Obtain daily statistics of a user.
Parameters:
user_id
: ID of the userstart_date
: Start date in format YYYY-MM-DDTHH:MM:SS
end_date
: End date in format YYYY-MM-DDTHH:MM:SS
tag
(optional): Tag to filterExample:
Request:
user_statistics=stats.user_daily_statistics(
user_id='2948a036-36f8-4f76-babd-0635874aa3er',
start_date='2023-09-01T00:00:00',
end_date='2023-10-02T00:00:00',
tag=['Business', 'Personal']
)
Response:
{"Result": [
{
"UserId": "2948a036-36f8-4f76-babd-0635874aa3er",
"InstanceId": "",
"AppId": "",
"CompanyId": "",
"ReportDate": "2023-09-02T00:00:00",
"MileageKm": 200.7945138572461,
"MileageMile": 124.77371091089272,
"TripsCount": 8,
"DriverTripsCount": 8,
"OtherTripsCount": 0,
"MaxSpeedKmh": 122.29244232177734,
"MaxSpeedMileh": 75.99252365875243,
"AverageSpeedKmh": 54.68438828527036,
"AverageSpeedMileh": 33.980878880466996,
"TotalSpeedingKm": 12.483415754279346,
"TotalSpeedingMile": 7.757194549709185,
"AccelerationsCount": 4,
"BrakingsCount": 5,
"CorneringsCount": 4,
"PhoneUsageDurationMin": 3.5368999999999997,
"PhoneUsageMileageKm": 2.2573077536862733,
"PhoneUsageMileageMile": 1.40269103814065,
"PhoneUsageSpeedingDurationMin": 0.0,
"PhoneUsageSpeedingMileageKm": 0.0,
"PhoneUsageSpeedingMileageMile": 0.0,
"DrivingTime": 186.96666666666667,
"NightDrivingTime": 0.0,
"DayDrivingTime": 45.993165254592896,
"RushHoursDrivingTime": 140.0721311569214,
"PermissionsLevel": 92,
"TrustLevel": 92.0
},
],
"Status": 200,
"Title": "",
"Errors": []
}
user_daily_ecoscore
Retrieve a user's daily ecoscore.
Parameters:
user_id
: ID of the userstart_date
: Start dateend_date
: End dateExample:
Request:
user_statistics=stats.user_daily_ecoscore(
user_id='2948a036-36f8-4f76-babd-0635874aa3er',
start_date='2023-09-01T00:00:00',
end_date='2023-10-02T00:00:00',
)
Response:
"Result": [
{
"UserId": "2948a036-36f8-4f76-babd-0635874aa3er",
"InstanceId": "",
"AppId": "",
"CompanyId": "",
"CalcDate": "2023-10-02T00:00:00",
"EcoScoreFuel": 97.80603418529739,
"EcoScoreTyres": 100.0,
"EcoScoreBrakes": 71.24604879817583,
"EcoScoreDepreciation": 30.066967347066047,
"EcoScore": 75.74524464826901,
"PermissionsLevel": 100,
"TrustLevel": 100.0
}
],
"Status": 200,
"Title": "",
"Errors": []
}
user_daily_safetyscore
Get a user's daily safety score.
Parameters:
user_id
: ID of the userstart_date
: Start dateend_date
: End datetag
(optional): Tag to filterExample:
Request:
user_statistics=stats.user_daily_safetyscore(
user_id='2948a036-36f8-4f76-babd-0635874aa3er',
start_date='2023-09-01T00:00:00',
end_date='2023-10-02T00:00:00',
)
Response:
"Result": [
{
"UserId": "2948a036-36f8-4f76-babd-0635874aa3er",
"InstanceId": "",
"AppId": "",
"CompanyId": "",
"AccelerationScore": 78.0,
"BrakingScore": 80.0,
"SpeedingScore": 72.0,
"PhoneUsageScore": 86.0,
"CorneringScore": 79.0,
"SafetyScore": 90.0,
"CalcDate": "2023-10-02T00:00:00",
"PermissionsLevel": 100,
"TrustLevel": 100.0
}
],
"Status": 200,
"Title": "",
"Errors": []
}
user_accumulated_statistics
Fetch accumulated statistics for a user.
Parameters:
user_id
: ID of the userstart_date
: Start dateend_date
: End datetag
(optional): Tag to filterExample:
Request:
user_statistics=stats.user_accumulated_statistics(
user_id='2948a036-36f8-4f76-babd-0635874aa3er',
start_date='2023-09-01T00:00:00',
end_date='2023-10-02T00:00:00',
)
Response:
"Result": [
{
"UserId": "2948a036-36f8-4f76-babd-0635874aa3er",
"InstanceId": "",
"AppId": "",
"CompanyId": "",
"MileageKm": 2111.0221881212033,
"MileageMile": 1311.789187698516,
"TripsCount": 153,
"DriverTripsCount": 153,
"OtherTripsCount": 0,
"MaxSpeedKmh": 122.29244232177734,
"MaxSpeedMileh": 75.99252365875243,
"AverageSpeedKmh": 43.86747108399977,
"AverageSpeedMileh": 27.25924653159745,
"TotalSpeedingKm": 144.23474761841058,
"TotalSpeedingMile": 89.6274721700803,
"AccelerationsCount": 94,
"BrakingsCount": 78,
"CorneringsCount": 45,
"PhoneUsageDurationMin": 20.447583333333334,
"PhoneUsageMileageKm": 17.025709577441788,
"PhoneUsageMileageMile": 10.579775931422326,
"PhoneUsageSpeedingDurationMin": 0.2427833333333333,
"PhoneUsageSpeedingMileageKm": 0.32201192397028167,
"PhoneUsageSpeedingMileageMile": 0.20009820955513297,
"DrivingTime": 3301.6166666666663,
"NightDrivingTime": 0.0,
"DayDrivingTime": 1807.0491929650307,
"RushHoursDrivingTime": 1490.29370367527,
"PermissionsLevel": 93,
"TrustLevel": 93.0
}
],
"Status": 200,
"Title": "",
"Errors": []
}
user_accumulated_ecoscore
Acquire a user's accumulated ecoscore over a range.
Parameters:
user_id
: ID of the userstart_date
: Start dateend_date
: End dateExample:
Request:
user_statistics.user_accumulated_ecoscore(
user_id='2948a036-36f8-4f46-babd-0635870aa7ed',
start_date='2023-09-01T00:00:00',
end_date='2023-10-02T00:00:00'
)
Response:
"Result": [
{
"UserId": "2948a036-36f8-4f76-babd-0635874aa3er",
"InstanceId": "",
"AppId": "",
"CompanyId": "",
"EcoScoreFuel": 97.21532847773788,
"EcoScoreTyres": 100.0,
"EcoScoreBrakes": 83.25091485161596,
"EcoScoreDepreciation": 26.5303907938692,
"EcoScore": 75.00759345586548,
"PermissionsLevel": 93,
"TrustLevel": 93.0
}
],
"Status": 200,
"Title": "",
"Errors": []
}
user_accumulated_safetyscore
Obtain a user's accumulated safety score.
Parameters:
user_id
: ID of the userstart_date
: Start dateend_date
: End datetag
(optional): Tag to filterExample:
Request:
user_statistics=stats.user_accumulated_safetyscore(
user_id='2948a036-36f8-4f76-babd-0635874aa3er',
start_date='2023-09-01T00:00:00',
end_date='2023-10-02T00:00:00',
tag='')
Response:
"Result": [
{
"UserId": "2948a036-36f8-4f76-babd-0635874aa3er",
"InstanceId": "",
"AppId": "",
"CompanyId": "",
"AccelerationScore": 77.625,
"BrakingScore": 81.96875,
"SpeedingScore": 70.125,
"PhoneUsageScore": 86.46875,
"CorneringScore": 85.71875,
"SafetyScore": 89.53125,
"PermissionsLevel": 93,
"TrustLevel": 93.0
}
],
"Status": 200,
"Title": "",
"Errors": []
entity_accumulated_ecoscore
Retrieve the accumulated ecoscore for an entity.
Parameters:
start_date
: Start dateend_date
: End datetag
(optional): Tag to filterinstance_id
: Instance IDapp_id
: Application IDcompany_id
: Company IDExample:
Request:
instance_statistics=stats.entity_accumulated_ecoscore(
start_date='2023-09-01T00:00:00',
end_date='2023-10-02T00:00:00',
instance_id="your_instance_id",
)
Response:
"Result": {
"UserId": null,
"InstanceId": "your_instance_id",
"AppId": null,
"CompanyId": null,
"EcoScoreFuel": 97.52329737487166,
"EcoScoreTyres": 100.0,
"EcoScoreBrakes": 75.59935000534821,
"EcoScoreDepreciation": 44.719564784133794,
"EcoScore": 80.30344045080935,
"PermissionsLevel": 94,
"TrustLevel": 94.0
},
"Status": 200,
"Title": "",
"Errors": []
entity_daily_statistics
Fetch daily statistics for an entity.
Parameters:
start_date
: Start dateend_date
: End datetag
(optional): Tag to filterinstance_id
: Instance IDapp_id
: Application IDcompany_id
: Company IDExample:
Request:
company_d_statistics=stats.entity_daily_statistics(
start_date='2023-09-01T00:00:00',
end_date='2023-10-02T00:00:00',
company_id='your_company_id'
)
Response:
"Result": [
{
"InstanceId": null,
"AppId": null,
"CompanyId": "your_company_id",
"ReportDate": "2023-09-18T00:00:00",
"RegisteredUsers": 12,
"ActiveUsers": 282,
"MileageKm": 25382.13108184097,
"MileageMile": 15772.456254255985,
"TripsCount": 1789,
"DriverTripsCount": 1786,
"OtherTripsCount": 3,
"MaxSpeedKmh": 146.1915283203125,
"MaxSpeedMileh": 90.84341569824218,
"AverageSpeedKmh": 36.002057830035696,
"AverageSpeedMileh": 22.371678735584183,
"TotalSpeedingKm": 560.9847620514762,
"TotalSpeedingMile": 348.595931138787,
"AccelerationsCount": 1139,
"BrakingsCount": 1326,
"CorneringsCount": 1474,
"PhoneUsageDurationMin": 3800.4465833333334,
"PhoneUsageMileageKm": 2284.020002380001,
"PhoneUsageMileageMile": 1419.290029478932,
"PhoneUsageSpeedingDurationMin": 12.098366666666667,
"PhoneUsageSpeedingMileageKm": 10.980101468687467,
"PhoneUsageSpeedingMileageMile": 6.823035052642389,
"DrivingTime": 35077.866666666676,
"NightDrivingTime": 1351.4007195532322,
"DayDrivingTime": 21381.867682458833,
"RushHoursDrivingTime": 12418.06661722064,
"PermissionsLevel": 95,
"TrustLevel": 95.0
},
],
"Status": 200,
"Title": "",
"Errors": []
}
entity_safety_score
Obtain safety score for an entity.
Parameters:
start_date
: Start dateend_date
: End datetag
(optional): Tag to filterinstance_id
: Instance IDapp_id
: Application IDcompany_id
: Company IDExample:
Request:
instance_statistics=stats.entity_daily_safetyscore(
start_date='2023-09-20T00:00:00',
end_date='2023-10-02T00:00:00',
app_id="your_app_id",
)
Response:
"Result": [
{
"InstanceId": null,
"AppId": "your_app_id",
"CompanyId": null,
"ReportDate": "2023-10-02T00:00:00",
"AccelerationScore": 76.99007444168734,
"BrakingScore": 76.41935483870968,
"SpeedingScore": 90.21339950372209,
"PhoneUsageScore": 74.04466501240695,
"CorneringScore": 74.01488833746899,
"SafetyScore": 83.22332506203475,
"PermissionsLevel": 95,
"TrustLevel": 95.0
}
],
"Status": 200,
"Title": "",
"Errors": []
}
entity_accumulated_statistics
Get accumulated statistics for an entity.
Parameters:
start_date
: Start dateend_date
: End datetag
(optional): Tag to filterinstance_id
: Instance IDapp_id
: Application IDcompany_id
: Company IDExample:
Request:
company_statistics=stats.entity_accumulated_statistics(
start_date='2023-09-01T00:00:00',
end_date='2023-10-02T00:00:00',
company_id='your_company_id'
)
Response
{
"Result": {
"InstanceId": null,
"AppId": null,
"CompanyId": "your_company_id",
"TotalRegisteredUsers": 299,
"ActiveUsers": 491,
"MileageKm": 765112.3461886081,
"MileageMile": 475440.8119216011,
"TripsCount": 47429,
"DriverTripsCount": 47200,
"OtherTripsCount": 229,
"MaxSpeedKmh": 235.80712890625,
"MaxSpeedMileh": 146.53054990234375,
"AverageSpeedKmh": 37.49730203560512,
"AverageSpeedMileh": 23.300823484925015,
"TotalSpeedingKm": 18645.076059143215,
"TotalSpeedingMile": 11586.050263151588,
"AccelerationsCount": 31278,
"BrakingsCount": 39863,
"CorneringsCount": 40161,
"PhoneUsageDurationMin": 117555.1976166667,
"PhoneUsageMileageKm": 67128.67055363058,
"PhoneUsageMileageMile": 41713.75588202606,
"PhoneUsageSpeedingDurationMin": 347.51840000000016,
"PhoneUsageSpeedingMileageKm": 357.2293322990894,
"PhoneUsageSpeedingMileageMile": 221.98230709065405,
"DrivingTime": 1014552.5333333339,
"NightDrivingTime": 43901.92194293812,
"DayDrivingTime": 636574.804801112,
"RushHoursDrivingTime": 341089.71085665515,
"PermissionsLevel": 95,
"TrustLevel": 95.0
},
"Status": 200,
"Title": "",
"Errors": []
}
entity_daily_safetyscore
Fetch daily safety score for an entity.
Parameters:
start_date
: Start dateend_date
: End datetag
(optional): Tag to filterinstance_id
: Instance IDapp_id
: Application IDcompany_id
: Company IDExample:
Request:
app_statistics=stats.entity_daily_safetyscore(
start_date='2023-09-01T00:00:00',
end_date='2023-10-02T00:00:00',
app_id="your_app_id",
)
Response:
"Result": [
{
"InstanceId": null,
"AppId": "your_app_id",
"CompanyId": null,
"ReportDate": "2023-10-02T00:00:00",
"AccelerationScore": 76.99007444168734,
"BrakingScore": 76.41935483870968,
"SpeedingScore": 90.21339950372209,
"PhoneUsageScore": 74.04466501240695,
"CorneringScore": 74.01488833746899,
"SafetyScore": 83.22332506203475,
"PermissionsLevel": 95,
"TrustLevel": 95.0
},
],
"Status": 200,
"Title": "",
"Errors": []
}
lastupdates
Get the last updates for a user.
Parameters:
user_id
: ID of the userExample:
Request:
metadata=stats.lastupdates(
user_id='2948a036-36f8-4f46-babd-0635870aa7ed'
)
Response:
{
"Result": [
{
"UserId": "your_user_id",
"InstanceId": "your_instance_id",
"AppId": "your_app_id",
"CompanyId": "your_company_id",
"LatestTripDate": "2023-10-11T14:33:40+01:00",
"LatestScoringDate": "2023-10-11T00:00:00"
}
],
"Status": 200,
"Title": "",
"Errors": []
}
uniquetags
Obtain unique tags for a user within a specific range.
Parameters:
user_id
: ID of the userstart_date
: Start dateend_date
: End dateExample:
Request:
metadata=stats.uniquetags(
user_id='2948a036-36f8-4f46-babd-0635870aa7ed',
start_date='2023-09-01T00:00:00',
end_date='2023-10-02T00:00:00',
)
Response:
{
"Result": {
"UniqueTagsCount": 2,
"UniqueTagsList": [
"your_tag_1",
"your_tag_x"
]
},
"Status": 200,
"Title": "",
"Errors": []
}
HTTPError
, the error will be printed, and the response will be handled accordingly.The Statistics Response
processes and provides easy access to specific parts of the data returned by the Statistics
module. Here's a detailed breakdown of its properties and methods:
result
Provides the 'Result' from the response. If the result is a list with a single item, it returns that item. Otherwise, it returns the full list or results.
Return Type: dict
or list
status
Returns the 'Status' from the response.
Return Type: dict
title
Returns the 'Title' of the response.
Return Type: str
errors
Fetches any 'Errors' from the response.
Return Type: list
latest_trip_date
Provides the 'LatestTripDate' from the result.
Return Type: Depends on data (e.g., str
, None
)
latest_scoring_date
Retrieves the 'LatestScoringDate' from the result.
Return Type: Depends on data (e.g., str
, None
)
tags_count
Gives the 'UniqueTagsCount' from the result.
Return Type: Depends on data (e.g., int
, None
)
tags_list
Fetches the 'UniqueTagsList' from the result.
Return Type: Depends on data (e.g., list
, None
)
After you fetch data using methods from the Statistics
module, you can pass the returned data to StatisticsResponse
to further process and easily access specific parts of the response.
# Import and initial initialization
from damoov_admin import statistics
email="your_admin_creds@auth.me"
password="YOUR PASSWORD"
stats = statistics.DamoovAuth(email=email, password=password)
# Methods to fetch user statistics and scores
app_statistics=stats.entity_daily_safetyscore(
start_date='2023-09-01T00:00:00',
end_date='2023-10-02T00:00:00',
app_id="your_app_id",
)
print(app_statistics)
print(app_statistics.status)
print(app_statistics.result)
metadata=stats.uniquetags(
user_id='2948a036-36f8-4f46-babd-0635870aa7ed',
start_date='2023-09-01T00:00:00',
end_date='2023-10-02T00:00:00',
)
print(metadata.tags_list)
print(metadata.tags_count)
metadata=stats.lastupdates(
user_id='2948a036-36f8-4f46-babd-0635870aa7ed'
)
print(metadata.latest_trip_date)
print(metadata.latest_scoring_date)
The Trips
module offers a robust set of functionalities designed for efficient trip data management. This encompasses a range of operations from fetching trip details, updating trip
If you haven't already, install the Damoov-Admin SDK for Python.
pip install damoov-admin
Begin by importing the User management module and finalizing the authentication process.
from damoov_admin import trips
email="your_admin_creds@auth.me"
password="YOUR PASSWORD"
trips_mngt = trips.DamoovAuth(email=email, password=password)
The Trips
module offers a robust set of functionalities tailored for managing and fetching trip-related data. Here's a comprehensive breakdown of its methods and their usage:
sort_by
: Sort parameter (e.g., "StartDateUtc, StartDateUtc_Desc").unit_system
: Measurement unit system (e.g., "Si" or "Imperial")user_id
: ID of the user/ DeviceToken whose trips are to be fetched.start_date
, end_date
: Date range for the trip in format YYYY-MM-DDTHH:MM:SS
start_date_timestamp_sec
, end_date_timestamp_sec
: Alternative date range using timestamps.include_details
: Include detailed trip data, like start, end address, transportation type, and tagsinclude_statistics
: Include statistics related to the trip.include_scores
: Include scores associated with the trip.include_waypoints
: Include per-second GPS waypoints of the trip.include_events
: Include events or incidents associated with the trip.include_related
: Include related trip data, including URI for future get requests.tags_included
: Tags to be included in the filtering.tags_excluded
: Tags to be excluded in the filtering.limit
: Limit the number of trips returned.get_list_trips
Fetches the list of trips for a specific user, with various optional filters to refine the result set.
user_id
: Requiredstart_date
, end_date
: Required.start_date_timestamp_sec
, end_date_timestamp_sec
include_details
include_statistics
include_scores
include_related
tags_included
tags_excluded
:unit_system
sort_by
limit
Example:
Request
user_trip_details=trip.get_list_trips(
user_id='user_id',
# start_date='2023-09-09',
# end_date='2023-10-10',
start_date_timestamp_sec=1696704060,
end_date_timestamp_sec=1696713840,
sort_by='StartDateUtc',
include_details=False,
include_statistics=False,
include_scores=False,
include_related=True,
tags_included=None,
tags_excluded=None,
locale="EN",
unit_system="Imperial",
# limit=3
)
Response
{
"Result": {
"Trips": [
{
"Id": "trip_id",
"DateUpdated": "2022-09-10T12:29:25+00:00",
"Identifiers": {
"CompanyId": "company_id",
"ApplicationId": "application_id",
"InstanceId": "instance_id",
"UserId": "user_id"
},
"Data": {
"StartDate": "2022-09-10T12:20:25+00:00",
"EndDate": "2022-09-10T12:29:25+00:00",
"UnitSystem": "Imperial",
"Addresses": {
"Start": {
"Full": "102 Beach St, San Francisco, CA 94133-1101, United States",
"Parts": {
"CountryCode": "USA",
"Country": "United States",
"County": "San Francisco",
"State": "California",
"City": "San Francisco",
"District": "Fisherman's Wharf",
"Street": "Beach St",
"House": "102"
}
},
"End": {
"Full": "E Beach, San Francisco, CA 94129, United States",
"Parts": {
"CountryCode": "USA",
"Country": "United States",
"County": "San Francisco",
"State": "California",
"City": "San Francisco",
"District": "Presidio",
"Street": "E Beach"
}
}
},
"TransportType": {
"Current": "OriginalDriver",
"ConfirmNeeded": false
},
"Tags": []
},
"Statistics": {
"Mileage": 4.143953744168464,
"DurationMinutes": 17.183333333333334,
"AccelerationsCount": 0.0,
"BrakingsCount": 0.0,
"CorneringsCount": 1.0,
"TotalSpeedingMileage": 0.0,
"MidSpeedingMileage": 0.0,
"HighSpeedingMileage": 0.0,
"PhoneUsageDurationMinutes": 11.989366666666665,
"PhoneUsageMileage": 3.5955679069262994,
"PhoneUsageWithSpeedingDurationMinutes": 0.0,
"PhoneUsageWithSpeedingMileage": 0.0,
"DayHours": 17.233333587646484,
"RushHours": 0.0,
"NightHours": 0.0,
"AverageSpeed": 11.416121791501084,
"MaxSpeed": 19.790273235742262
},
"Scores": {
"Safety": 97.0,
"Acceleration": 100.0,
"Braking": 100.0,
"Cornering": 56.0,
"Speeding": 100.0,
"PhoneUsage": 40.0,
"Eco": 77.0,
"EcoBrakes": 100.0,
"EcoDepreciation": 25.0,
"EcoFuel": 100.0,
"EcoTyres": 100.0
},
"Related": [
{
"Type": "Waypoints",
"Uri": "https://api.telematicssdk.com/trips/get/admin/v1/trip_id/waypoints"
},
{
"Type": "Trip",
"Uri": "https://api.telematicssdk.com/trips/get/v1/trip_id"
}
]
}
]
},
"Status": 200,
"Title": "",
"Errors": []
}
get_trip_details
Retrieves waypoint details of a specific trip by its unique ID.
trip_id
: (Required)user_id
: (Required)include_details
: Include detailed trip data.include_statistics
: Include statistics related to the trip.include_scores
: Include scores associated with the trip.include_waypoints
: Include waypoints of the trip.include_events
: Include events associated with the trip.include_related
: Include related trip data.locale
: Locale settings (e.g., "EN").unit_system
: Measurement unit system (e.g., "Si" or "Imperial").Example:
Request
trip_details = trip.get_trip_details(
trip_id="trip_id",
user_id="user_id",
include_details=True,
include_statistics=True,
include_scores=True,
include_waypoints=True,
include_events=True,
include_related=True,
locale="EN",
unit_system="Imperial"
)
Response
{
"Result": {
"Trip": {
"Id": "trip_id",
"DateUpdated": "2023-10-11T07:34:31+00:00",
"Identifiers": {
"CompanyId": "company_id",
"ApplicationId": "application_id",
"InstanceId": "instance_id",
"UserId": "user_id"
},
"Data": {
"StartDate": "2023-10-09T08:19:23+01:00",
"StartDateUnixMilliseconds": 1696835963000,
"EndDate": "2023-10-09T08:36:44+01:00",
"EndDateUnixMilliseconds": 1696837004000,
"UnitSystem": "Imperial",
"Addresses": {
"Start": {
"Full": "Avenida Marechal Gomes da Costa 17, 1800-253 Lisbon, Portugal",
"Parts": {
"CountryCode": "PRT",
"Country": "Portugal",
"County": "Lisbon",
"City": "Lisbon",
"District": "Lisbon",
"Street": "Avenida Marechal Gomes da Costa",
"House": "17"
}
},
"End": {
"Full": "Rua do Arco do Cego 177, 1000-020 Lisbon, Portugal",
"Parts": {
"CountryCode": "PRT",
"Country": "Portugal",
"County": "Lisbon",
"City": "Lisbon",
"District": "Lisbon",
"Street": "Rua do Arco do Cego",
"House": "177"
}
}
},
"TransportType": {
"Current": "OriginalDriver",
"ConfirmNeeded": true
},
"Tags": []
},
"Statistics": {
"Mileage": 3.111590678261461,
"DurationMinutes": 17.35,
"AccelerationsCount": 1.0,
"BrakingsCount": 0.0,
"CorneringsCount": 0.0,
"TotalSpeedingMileage": 0.021650736620396006,
"MidSpeedingMileage": 0.06389130188092126,
"HighSpeedingMileage": 0.0,
"PhoneUsageDurationMinutes": 0.0,
"PhoneUsageMileage": 0.0,
"PhoneUsageWithSpeedingDurationMinutes": 0.0,
"PhoneUsageWithSpeedingMileage": 0.0,
"DayHours": 0.0,
"RushHours": 17.270366668701172,
"NightHours": 0.0,
"AverageSpeed": 20.500146429454027,
"MaxSpeed": 47.186389247420195
},
"Scores": {
"Safety": 79.0,
"Acceleration": 53.0,
"Braking": 100.0,
"Cornering": 100.0,
"Speeding": 48.0,
"PhoneUsage": 100.0,
"Eco": 91.0,
"EcoBrakes": 100.0,
"EcoDepreciation": 75.0,
"EcoFuel": 98.94907,
"EcoTyres": 100.0
},
"Waypoints": [
{
"Index": 0,
"SecSinceStart": 0,
"PointDateUnixMilliseconds": 0,
"Lat": 0,
"Long": 0,
"Speed": 0,
"SpeedLimit": 0,
"Speeding":status ,
"PhoneUsage": true
}
],
"Events": [
{
"Id": "",
"Type": "Acceleration",
"Date": "2023-10-09T08:22:10+01:00",
"Lat": 38.74998,
"Long": -9.10616,
"Value": 3.353325366973877
}
],
"Related": [
{
"Type": "Waypoints",
"Uri": "https://api.telematicssdk.com/trips/get/admin/v1/300665e1-e415-46ab-892f-1cd25afd650d/waypoints"
}
]
}
},
"Status": 200,
"Title": "",
"Errors": []
}
HTTPError
, the error will be printed, and the response will be handled accordingly.The TripsResponse
processes and provides easy access to specific parts of the data returned by the Trips
module. Here's a detailed breakdown of its properties:
result
Returns the 'Result' part from the response.
Return Type: dict
trips
Provides the list of 'Trip' items from the response. If the result is not a list, an empty list is returned.
Return Type: list
statistics
Provides the 'Statistics' information for a trip.
Return Type: dict
details
Returns the detailed data for the 'Trip'.
Return Type: dict
transporttype
Provides the 'TransportType' information for a trip.
Return Type: dict
scores
Returns the 'Scores' for the trip.
Return Type: dict
events
Provides the 'Events' for the trip.
Return Type: dict
waypoints
Returns the 'Waypoints' for the trip.
Return Type: dict
paging_info
Provides the paging information if available.
Return Type: dict
status
Returns the 'Status' from the response.
Return Type: dict
datetime
Provides the 'Data' (usually representing datetime) from the response.
Return Type: dict
trip_id
Returns the unique ID for the trip.
Return Type: Depends on data (e.g., str
, None
)
After making calls to the Trips
module to retrieve trip-related data, you can pass the returned data to TripsResponse
to further process and easily access specific parts of the response.
# Import and initial initialization
from damoov_admin import trips
email="your_admin_creds@auth.me"
password="YOUR PASSWORD"
trips_mngt = trips.DamoovAuth(email=email, password=password)
# Method to get a list of trips for selected period of time
user_trip_details=trip.get_list_trips(
user_id='7623f515-b867-4325-bc63-3a0248d4f774',
# start_date='2023-09-09',
# end_date='2023-10-10',
start_date_timestamp_sec=1696704060,
end_date_timestamp_sec=1696713840,
sort_by='StartDateUtc',
tags_included=['Business'],
include_details=True,
include_statistics=True,
include_scores=True,
include_related=True,
locale="EN",
unit_system="Imperial",
limit=1
)
print('status: ', user_trip_details.status)
print('details: ', user_trip_details.details)
print('trips: ',user_trip_details.trips)
print('trip id: ',user_trip_details.trip_id)
print('date and time: ', user_trip_details.datetime)
print(user_trip_details.paging_info)
print(user_trip_details) # prints full response in JSON format
# Methods to fetch trip details, including waypoints, for a specific trip ID.
trip_details = trip_mngt.get_trip_details(
trip_id="trip_id",
user_id="user_id",
include_details=True,
include_statistics=True,
include_scores=True,
include_waypoints=True,
include_events=True,
include_related=True,
locale="EN",
unit_system="Imperial"
)
print(trip_details) # prints full response in JSON format
print('Status: ', trip_details.status)
print('Result: ',trip_details.result)
print('Statistics: ',trip_details.statistics)
print('Scores: ',trip_details.scores)
print('Events: ',trip_details.events)
print('Waypoints: ',trip_details.waypoints)
print('Details: ',trip_details.details)
print('Transportation mode: ',trip_details.transporttype)
The Users
module provides a comprehensive suite of functionalities to manage user data effectively, ranging from user creation, updates, to deletions. Below is a breakdown of its methods and their usage:
If you haven't already, install the Damoov-Admin SDK for Python.
pip install damoov-admin
Begin by importing the User management module and finalizing the authentication process.
from damoov_admin import users
email="your_admin_creds@auth.me"
password="YOUR PASSWORD"
user_mngt = users.DamoovAuth(email=email, password=password)
instanceid
: The instance ID for the user.instancekey
: The instance Key for the user.ClientId
: A unique identifier assigned by the client for the user.FirstName
: First name of the user.LastName
: Last name of the user.Nickname
: Nickname for the user.Phone
: Phone number of the user.Email
: Email address of the user.CreateAccessToken
: If set to True, a user's access token will be created.create_user
Creates a new user based on the given parameters.
Parameters
instanceid
: Required.instancekey
: Required.FirstName
: Optional.LastName
: Optional.Nickname
: Optional.Phone
: Optional.Email
: Optional.ClientId
: Optional.CreateAccessToken
: Optional.Example:
Request:
new_user=users_mgnt.create_user(
instanceid='your_instance_id',
instancekey='your_instance_key',
FirstName='FirstName',
LastName='LastName',
Nickname='Nickname',
Phone='123456789',
)
Response:
📘 DeviceToken is an old name for UserId
{
"Result": {
"DeviceToken": "user_devicetoken/userid", // DeviceToekn is the same as UserId
"AccessToken": null,
"RefreshToken": null
},
"Status": 200,
"Title": "",
"Errors": []
}
update_user
Updates user details based on the given parameters.
Parameters
userid
: Required. User's unique identifier.ClientId
: Optional. Client ID for the user.FirstName
: Optional. Updated first name of the user.LastName
: Optional. Updated last name of the user.Nickname
: Optional. Updated nickname for the user.Phone
: Optional. Updated phone number of the user.Email
: Optional. Updated email address of the user.Example:
Request:
user=users_mgnt.update_user(
userid='User_Id',
FirstName='Tim',
LastName='Plumber',
Nickname='Tim-tim',
Phone='123456789',
ClientId='12-34-56789'
)
Response:
{
"Status": 200,
"Title": "",
"Errors": []
}
delete_user
Parameters:
Example:
Request:
delete_user=users_mgnt.delete_user(
userid='User_devicetoken/userid'
)
Response:
{
"Status": 200,
"Title": "",
"Errors": []
}
The UsersResponse
class is tailored to process and provide convenient access to specific parts of the data returned from user-related operations. Here's an in-depth breakdown of its properties and methods:
devicetoken
Returns the DeviceToken
from the response's Result
section. It provides the device token/ UseId associated with the user.
Return Type: Depends on data (e.g., str
, None
)
userid
Returns the user ID from the response's Result
section. It provides the device token/ UseId associated with the user.
Return Type: Depends on data (e.g., str
, None
)
status
Extracts the 'Status' of the response. This typically indicates the success or failure of the operation and might contain relevant status codes or messages.
Return Type: dict
After conducting operations related to users, you can pass the returned data to UsersResponse
to further process and effortlessly access specific parts of the response.
# Import and initial initialization
from damoov_admin import users
email="your_admin_creds@auth.me"
password="YOUR PASSWORD"
user_mngt = users.DamoovAuth(email=email, password=password)
# Use methods to create and manage users
new_user=users.create_user(
instanceid='your_instance_id',
instancekey='your_instance_key',,
)
print(new_user)
print(new_user.devicetoken)
print(new_user.status)
print(new_user.userid)
user=users_mgnt.update_user(
userid='User_Id',
FirstName='Tim',
LastName='Plumber',
Nickname='Tim-tim',
Phone='123456789',
ClientId='12-34-56789'
)
print(user)
print(user.status)
FAQs
SDK for Damoov's APIs
We found that damoov-admin demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Fluent Assertions is facing backlash after dropping the Apache license for a commercial model, leaving users blindsided and questioning contributor rights.
Research
Security News
Socket researchers uncover the risks of a malicious Python package targeting Discord developers.
Security News
The UK is proposing a bold ban on ransomware payments by public entities to disrupt cybercrime, protect critical services, and lead global cybersecurity efforts.