Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

ddpg-agent

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

ddpg-agent

Reinforcement Learning model using Deep Deterministic Policy Gradients (DDPG)

  • 0.0.3
  • PyPI
  • Socket score

Maintainers
1

ddpg_agent

Reinforcement Learning agent using Deep Deterministic Policy Gradients (DDPG).

This reinforcement lerning model is a modified version of Udacity's DDPG model which is based on the paper Continuous control with deep reinforcement learning. This project was developed as part of the Machine Learning Engineer Nanodegree quadcopter project and the model is based on code provided in the project assignment.

Solving OpenAI Gym's MountainCarContinuous-v0 continuous control problem with this model provides a particularly good learning example as its 2-dimensional continuous state space (position and velocity) and 1-dimensional continuous action space (forward, backward) are easy to visualize in two dimensions, lending to an intuitive understanding of hyperparameter tuning.

Project development began as a kaggle kernel. Initial code in this repo is based on DDPG_OpenAI-MountainCarContinuous-V0 Version 74.

Usage

See Solving MountainCarContinuous-v0.ipynb for an example of usage and a demo training visualization output.

Credits

  • Continuous control with deep reinforcement learning
  • Andre Muta's DDPG-MountainCarContinuous-v0 repo was helpful in suggesting some good visualizations as well as giving some good hyperparameters to start with. It looks like he uses the same code from the nanodegree quadcopter project and uses it to solve the MountainCarContinuous problem as well. His plot_Q method in MountainCar.py was particularly helpful by showing how to plot Q_max, Q_std, Action at Q_max, and Policy. Adding a visualization of the policy gradients and animating the training process ended up helping me better understand the problem and the effects of various hypterparemeters.
  • Thanks to Eli Bendersky for help with matplotlib animations.
  • Thanks to Joseph Long for help with matplotlib colorbar axes placement.

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc