DeepMatcher
.. image:: https://travis-ci.org/anhaidgroup/deepmatcher.svg?branch=master
:target: https://travis-ci.org/anhaidgroup/deepmatcher
.. image:: https://img.shields.io/badge/License-BSD%203--Clause-blue.svg
:target: https://opensource.org/licenses/BSD-3-Clause
DeepMatcher is a Python package for performing entity and text matching using deep learning.
It provides built-in neural networks and utilities that enable you to train and apply
state-of-the-art deep learning models for entity matching in less than 10 lines of code.
The models are also easily customizable - the modular design allows any subcomponent to be
altered or swapped out for a custom implementation.
As an example, given labeled tuple pairs such as the following:
.. image:: https://raw.githubusercontent.com/anhaidgroup/deepmatcher/master/docs/source/_static/match_input_ex.png
DeepMatcher uses labeled tuple pairs and trains a neural network to perform matching, i.e., to
predict match / non-match labels. The trained network can then be used to obtain labels for
unlabeled tuple pairs.
Paper and Data
For details on the architecture of the models used, take a look at our paper Deep Learning for Entity Matching
_ (SIGMOD '18). All public datasets used in
the paper can be downloaded from the datasets page <Datasets.md>
__.
Quick Start: DeepMatcher in 30 seconds
There are four main steps in using DeepMatcher:
- Data processing: Load and process labeled training, validation and test CSV data.
.. code-block:: python
import deepmatcher as dm
train, validation, test = dm.data.process(path='data_directory',
train='train.csv', validation='validation.csv', test='test.csv')
- Model definition: Specify neural network architecture. Uses the built-in hybrid
model (as discussed in section 4.4 of
our paper <http://pages.cs.wisc.edu/~anhai/papers1/deepmatcher-sigmod18.pdf>
__) by default. Can
be customized to your heart's desire.
.. code-block:: python
model = dm.MatchingModel()
- Model training: Train neural network.
.. code-block:: python
model.run_train(train, validation, best_save_path='best_model.pth')
- Application: Evaluate model on test set and apply to unlabeled data.
.. code-block:: python
model.run_eval(test)
unlabeled = dm.data.process_unlabeled(path='data_directory/unlabeled.csv', trained_model=model)
model.run_prediction(unlabeled)
Installation
We currently support only Python versions 3.5+. Installing using pip is recommended:
.. code-block::
pip install deepmatcher
Tutorials
Using DeepMatcher:
Getting Started
_: A more in-depth guide to help you get familiar with the basics of
using DeepMatcher.Data Processing
_: Advanced guide on what data processing involves and how to
customize it.Matching Models
_: Advanced guide on neural network architecture for entity matching
and how to customize it.
Entity Matching Workflow:
End to End Entity Matching
: A guide to develop a complete entity
matching workflow. The tutorial discusses how to use DeepMatcher with Magellan
to
perform blocking, sampling, labeling and matching to obtain matching tuple pairs from two
tables.
DeepMatcher for other matching tasks:
Question Answering with DeepMatcher
: A tutorial on how to use DeepMatcher for question
answering. Specifically, we will look at WikiQA
, a benchmark dataset for the task of
Answer Selection.
API Reference
API docs are here
_.
Support
Take a look at the FAQ <FAQ.md>
__ for common issues. If you run into any issues or have questions not answered in the FAQ,
please file GitHub issues
_ and we will address them asap.
The Team
DeepMatcher was developed by University of Wisconsin-Madison grad students Sidharth Mudgal
and Han Li, under the supervision of Prof. AnHai Doan and Prof. Theodoros Rekatsinas.
.. _Deep Learning for Entity Matching
: http://pages.cs.wisc.edu/~anhai/papers1/deepmatcher-sigmod18.pdf
.. _Prof. AnHai Doan's data repository
: https://sites.google.com/site/anhaidgroup/useful-stuff/data
.. _Magellan
: https://sites.google.com/site/anhaidgroup/projects/magellan
.. _Getting Started
: https://nbviewer.jupyter.org/github/anhaidgroup/deepmatcher/blob/master/examples/getting_started.ipynb
.. _Data Processing
: https://nbviewer.jupyter.org/github/anhaidgroup/deepmatcher/blob/master/examples/data_processing.ipynb
.. _Matching Models
: https://nbviewer.jupyter.org/github/anhaidgroup/deepmatcher/blob/master/examples/matching_models.ipynb
.. _End to End Entity Matching
: https://nbviewer.jupyter.org/github/anhaidgroup/deepmatcher/blob/master/examples/end_to_end_em.ipynb
.. _are here
: https://anhaidgroup.github.io/deepmatcher/html/
.. _Question Answering with DeepMatcher
: https://nbviewer.jupyter.org/github/anhaidgroup/deepmatcher/blob/master/examples/question_answering.ipynb
.. _WikiQA
: https://aclweb.org/anthology/D15-1237
.. _file GitHub issues
: https://github.com/anhaidgroup/deepmatcher/issues