DeepSpeed offers a confluence of system innovations, that has made large scale DL training effective, and efficient, greatly improved ease of use, and redefined the DL training landscape in terms of scale that is possible. These innovations such as ZeRO, 3D-Parallelism, DeepSpeed-MoE, ZeRO-Infinity, etc. fall under the training pillar. Learn more: DeepSpeed-Training
DeepSpeed brings together innovations in parallelism technology such as tensor, pipeline, expert and ZeRO-parallelism, and combines them with high performance custom inference kernels, communication optimizations and heterogeneous memory technologies to enable inference at an unprecedented scale, while achieving unparalleled latency, throughput and cost reduction. This systematic composition of system technologies for inference falls under the inference pillar. Learn more: DeepSpeed-Inference
To further increase the inference efficiency, DeepSpeed offers easy-to-use and flexible-to-compose compression techniques for researchers and practitioners to compress their models while delivering faster speed, smaller model size, and significantly reduced compression cost. Moreover, SoTA innovations on compression like ZeroQuant and XTC are included under the compression pillar. Learn more: DeepSpeed-Compression
In line with Microsoft's mission to solve humanity's most pressing challenges, the DeepSpeed team at Microsoft is responding to this opportunity by launching a new initiative called DeepSpeed4Science, aiming to build unique capabilities through AI system technology innovations to help domain experts to unlock today's biggest science mysteries. Learn more: tutorials
DeepSpeed users are diverse and have access to different environments. We recommend to try DeepSpeed on Azure as it is the simplest and easiest method. The recommended method to try DeepSpeed on Azure is through AzureML recipes. The job submission and data preparation scripts have been made available here. For more details on how to use DeepSpeed on Azure, please follow the Azure tutorial.
DeepSpeed has been used to train many different large-scale models, below is a list of several examples that we are aware of (if you'd like to include your model please submit a PR):
DeepSpeed has been integrated with several different popular open-source DL frameworks such as:
The quickest way to get started with DeepSpeed is via pip, this will install
the latest release of DeepSpeed which is not tied to specific PyTorch or CUDA
versions. DeepSpeed includes several C++/CUDA extensions that we commonly refer
to as our 'ops'. By default, all of these extensions/ops will be built
just-in-time (JIT) using torch's JIT C++ extension loader that relies on
ninja to build and
dynamically link them at runtime.
After installation, you can validate your install and see which extensions/ops
your machine is compatible with via the DeepSpeed environment report.
If you would like to pre-install any of the DeepSpeed extensions/ops (instead
of JIT compiling) or install pre-compiled ops via PyPI please see our advanced
installation instructions.
Windows support is partially supported with DeepSpeed. On Windows you can build wheel with following steps, currently only inference mode is supported.
This project welcomes contributions and suggestions. Most contributions require you to
agree to a Contributor License Agreement (CLA) declaring that you have the right to, and
actually do, grant us the rights to use your contribution. For details, visit
https://cla.opensource.microsoft.com.
When you submit a pull request, a CLA bot will automatically determine whether you need
to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply
follow the instructions provided by the bot. You will only need to do this once across
all repos using our CLA.
-
Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, Yuxiong He. (2019) ZeRO: memory optimizations toward training trillion parameter models. arXiv:1910.02054 and In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC '20).
-
Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. (2020) DeepSpeed: System Optimizations Enable Training Deep Learning Models with Over 100 Billion Parameters. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD '20, Tutorial).
-
Minjia Zhang, Yuxiong He. (2020) Accelerating Training of Transformer-Based Language Models with Progressive Layer Dropping. arXiv:2010.13369 and NeurIPS 2020.
-
Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase, Shuangyan Yang, Minjia Zhang, Dong Li, Yuxiong He. (2021) ZeRO-Offload: Democratizing Billion-Scale Model Training. arXiv:2101.06840 and USENIX ATC 2021. [paper] [slides] [blog]
-
Hanlin Tang, Shaoduo Gan, Ammar Ahmad Awan, Samyam Rajbhandari, Conglong Li, Xiangru Lian, Ji Liu, Ce Zhang, Yuxiong He. (2021) 1-bit Adam: Communication Efficient Large-Scale Training with Adam's Convergence Speed. arXiv:2102.02888 and ICML 2021.
-
Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, Yuxiong He. (2021) ZeRO-Infinity: Breaking the GPU Memory Wall for Extreme Scale Deep Learning. arXiv:2104.07857 and SC 2021. [paper] [slides] [blog]
-
Conglong Li, Ammar Ahmad Awan, Hanlin Tang, Samyam Rajbhandari, Yuxiong He. (2021) 1-bit LAMB: Communication Efficient Large-Scale Large-Batch Training with LAMB's Convergence Speed. arXiv:2104.06069 and HiPC 2022.
-
Conglong Li, Minjia Zhang, Yuxiong He. (2021) The Stability-Efficiency Dilemma: Investigating Sequence Length Warmup for Training GPT Models. arXiv:2108.06084 and NeurIPS 2022.
-
Yucheng Lu, Conglong Li, Minjia Zhang, Christopher De Sa, Yuxiong He. (2022) Maximizing Communication Efficiency for Large-scale Training via 0/1 Adam. arXiv:2202.06009.
-
Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang, Reza Yazdani Aminabadi, Ammar Ahmad Awan, Jeff Rasley, Yuxiong He. (2022) DeepSpeed-MoE: Advancing Mixture-of-Experts Inference and Training to Power Next-Generation AI Scale arXiv:2201.05596 and ICML 2022. [pdf] [slides] [blog]
-
Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley, Samyam Rajbhandari, Jared Casper, Zhun Liu, Shrimai Prabhumoye, George Zerveas, Vijay Korthikanti, Elton Zhang, Rewon Child, Reza Yazdani Aminabadi, Julie Bernauer, Xia Song, Mohammad Shoeybi, Yuxiong He, Michael Houston, Saurabh Tiwary, Bryan Catanzaro. (2022) Using DeepSpeed and Megatron to Train Megatron-Turing NLG 530B, A Large-Scale Generative Language Model arXiv:2201.11990.
-
Xiaoxia Wu, Zhewei Yao, Minjia Zhang, Conglong Li, Yuxiong He. (2022) Extreme Compression for Pre-trained Transformers Made Simple and Efficient. arXiv:2206.01859 and NeurIPS 2022.
-
Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, Yuxiong He. (2022) ZeroQuant: Efficient and Affordable Post-Training Quantization for Large-Scale Transformers. arXiv:2206.01861 and NeurIPS 2022 [slides] [blog]
-
Reza Yazdani Aminabadi, Samyam Rajbhandari, Minjia Zhang, Ammar Ahmad Awan, Cheng Li, Du Li, Elton Zheng, Jeff Rasley, Shaden Smith, Olatunji Ruwase, Yuxiong He. (2022) DeepSpeed Inference: Enabling Efficient Inference of Transformer Models at Unprecedented Scale. arXiv:2207.00032 and SC 2022. [paper] [slides] [blog]
-
Zhewei Yao, Xiaoxia Wu, Conglong Li, Connor Holmes, Minjia Zhang, Cheng Li, Yuxiong He. (2022) Random-LTD: Random and Layerwise Token Dropping Brings Efficient Training for Large-scale Transformers. arXiv:2211.11586.
-
Conglong Li, Zhewei Yao, Xiaoxia Wu, Minjia Zhang, Yuxiong He. (2022) DeepSpeed Data Efficiency: Improving Deep Learning Model Quality and Training Efficiency via Efficient Data Sampling and Routing. arXiv:2212.03597 ENLSP2023 Workshop at NeurIPS2023
-
Xiaoxia Wu, Cheng Li, Reza Yazdani Aminabadi, Zhewei Yao, Yuxiong He. (2023) Understanding INT4 Quantization for Transformer Models: Latency Speedup, Composability, and Failure Cases. arXiv:2301.12017 and ICML2023.
-
Syed Zawad, Cheng Li, Zhewei Yao, Elton Zheng, Yuxiong He, Feng Yan. (2023) DySR: Adaptive Super-Resolution via Algorithm and System Co-design. ICLR:2023.
-
Sheng Shen, Zhewei Yao, Chunyuan Li, Trevor Darrell, Kurt Keutzer, Yuxiong He. (2023) Scaling Vision-Language Models with Sparse Mixture of Experts. arXiv:2303.07226 and Finding at EMNLP2023.
-
Quentin Anthony, Ammar Ahmad Awan, Jeff Rasley, Yuxiong He, Aamir Shafi, Mustafa Abduljabbar, Hari Subramoni, Dhabaleswar Panda. (2023) MCR-DL: Mix-and-Match Communication Runtime for Deep Learning arXiv:2303.08374 and will appear at IPDPS 2023.
-
Siddharth Singh, Olatunji Ruwase, Ammar Ahmad Awan, Samyam Rajbhandari, Yuxiong He, Abhinav Bhatele. (2023) A Hybrid Tensor-Expert-Data Parallelism Approach to Optimize Mixture-of-Experts Training arXiv:2303.06318 and will appear at ICS 2023.
-
Guanhua Wang, Heyang Qin, Sam Ade Jacobs, Xiaoxia Wu, Connor Holmes, Zhewei Yao, Samyam Rajbhandari, Olatunji Ruwase, Feng Yan, Lei Yang, Yuxiong He. (2023) ZeRO++: Extremely Efficient Collective Communication for Giant Model Training arXiv:2306.10209 and ML for Sys Workshop at NeurIPS2023 [blog]
-
Zhewei Yao, Xiaoxia Wu, Cheng Li, Stephen Youn, Yuxiong He. (2023) ZeroQuant-V2: Exploring Post-training Quantization in LLMs from Comprehensive Study to Low Rank Compensation arXiv:2303.08302 and ENLSP2023 Workshop at NeurIPS2023 [slides]
-
Pareesa Ameneh Golnari, Zhewei Yao, Yuxiong He. (2023) Selective Guidance: Are All the Denoising Steps of Guided Diffusion Important? arXiv:2305.09847
-
Zhewei Yao, Reza Yazdani Aminabadi, Olatunji Ruwase, Samyam Rajbhandari, Xiaoxia Wu, Ammar Ahmad Awan, Jeff Rasley, Minjia Zhang, Conglong Li, Connor Holmes, Zhongzhu Zhou, Michael Wyatt, Molly Smith, Lev Kurilenko, Heyang Qin, Masahiro Tanaka, Shuai Che, Shuaiwen Leon Song, Yuxiong He. (2023) DeepSpeed-Chat: Easy, Fast and Affordable RLHF Training of ChatGPT-like Models at All Scales arXiv:2308.01320.
-
Xiaoxia Wu, Zhewei Yao, Yuxiong He. (2023) ZeroQuant-FP: A Leap Forward in LLMs Post-Training W4A8 Quantization Using Floating-Point Formats arXiv:2307.09782 and ENLSP2023 Workshop at NeurIPS2023 [slides]
-
Zhewei Yao, Xiaoxia Wu, Conglong Li, Minjia Zhang, Heyang Qin, Olatunji Ruwase, Ammar Ahmad Awan, Samyam Rajbhandari, Yuxiong He. (2023) DeepSpeed-VisualChat: Multi-Round Multi-Image Interleave Chat via Multi-Modal Causal Attention arXiv:2309.14327
-
Shuaiwen Leon Song, Bonnie Kruft, Minjia Zhang, Conglong Li, Shiyang Chen, Chengming Zhang, Masahiro Tanaka, Xiaoxia Wu, Jeff Rasley, Ammar Ahmad Awan, Connor Holmes, Martin Cai, Adam Ghanem, Zhongzhu Zhou, Yuxiong He, et al. (2023) DeepSpeed4Science Initiative: Enabling Large-Scale Scientific Discovery through Sophisticated AI System Technologies arXiv:2310.04610 [blog]
-
Zhewei Yao, Reza Yazdani Aminabadi, Stephen Youn, Xiaoxia Wu, Elton Zheng, Yuxiong He. (2023) ZeroQuant-HERO: Hardware-Enhanced Robust Optimized Post-Training Quantization Framework for W8A8 Transformers arXiv:2310.17723
-
Xiaoxia Wu, Haojun Xia, Stephen Youn, Zhen Zheng, Shiyang Chen, Arash Bakhtiari, Michael Wyatt, Reza Yazdani Aminabadi, Yuxiong He, Olatunji Ruwase, Leon Song, Zhewei Yao (2023) ZeroQuant(4+2): Redefining LLMs Quantization with a New FP6-Centric Strategy for Diverse Generative Tasks arXiv:2312.08583
-
Haojun Xia, Zhen Zheng, Xiaoxia Wu, Shiyang Chen, Zhewei Yao, Stephen Youn, Arash Bakhtiari, Michael Wyatt, Donglin Zhuang, Zhongzhu Zhou, Olatunji Ruwase, Yuxiong He, Shuaiwen Leon Song. (2024) FP6-LLM: Efficiently Serving Large Language Models Through FP6-Centric Algorithm-System Co-Design arXiv:2401.14112
-
Sam Ade Jacobs, Masahiro Tanaka, Chengming Zhang, Minjia Zhang, Reza Yazdani Aminadabi, Shuaiwen Leon Song, Samyam Rajbhandari, Yuxiong He. (2024) System Optimizations for Enabling Training of Extreme Long Sequence Transformer Models
-
Xinyu Lian, Sam Ade Jacobs, Lev Kurilenko, Masahiro Tanaka, Stas Bekman, Olatunji Ruwase, Minjia Zhang. (2024) Universal Checkpointing: Efficient and Flexible Checkpointing for Large Scale Distributed Training arXiv:2406.18820