Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

describr

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

describr

Describr is a Python library that provides a convenient way to generate descriptive statistics for datasets.

  • 0.0.31
  • PyPI
  • Socket score

Maintainers
1

README.md

describr is a Python library that provides functionality for descriptive statistics and outlier detection in pandas DataFrames.

Installation

You can install describr using pip:

pip install describr
Example usage
import pandas as pd
import numpy as np
from describr import FindOutliers, DescriptiveStats
Create a sample dataframe
np.random.seed(0)
n = 500

data = {
    'MCID': ['MCID_' + str(i) for i in range(1, n + 1)],
    'Age': np.random.randint(18, 90, size=n),
    'Race': np.random.choice(['White', 'Black', 'Asian', 'Hispanic',''], size=n),
    'Educational_Status': np.random.choice(['High School', 'Bachelor', 'Master', 'PhD',''], size=n),
    'Gender': np.random.choice(['Male', 'Female', ''], size=n),
    'ER_COST': np.random.uniform(500, 5000, size=n),
    'ER_VISITS': np.random.randint(0, 10, size=n),
    'IP_COST': np.random.uniform(5000, 20000, size=n),
    'IP_ADMITS': np.random.randint(0, 5, size=n),
    'CHF': np.random.choice([0, 1], size=n),
    'COPD': np.random.choice([0, 1], size=n),
    'DM': np.random.choice([0, 1], size=n),
    'ASTHMA': np.random.choice([0, 1], size=n),
    'HYPERTENSION': np.random.choice([0, 1], size=n),
    'SCHIZOPHRENIA': np.random.choice([0, 1], size=n),
    'MOOD_DEPRESSED': np.random.choice([0, 1], size=n),
    'MOOD_BIPOLAR': np.random.choice([0, 1], size=n),
    'TREATMENT': np.random.choice(['Yes', 'No'], size=n)
}

df = pd.DataFrame(data)
Parameters

df: name of dataframe

id_col: Primary key of the dataframe; accepts string or integer or float.

group_col: A Column to group by, It must be a binary column. Strings or integers are acceptable.

positive_class: This is the response value for the primary outcome of interest. For instance, positive value for a Treatment cohort is 'Yes' or 1 otherwise 'No' or 0, respectively. Strings or integers are acceptable.

continuous_var_summary: User specifies measures of central tendency, only mean and median are acceptable. This parameter is case insensitive.

Example usage of FindOutliers Class

This returns a dataframe (outliers_flag_df) with outlier_flag column (outlier_flag =1: record contains one or more ouliers). Tukey's IQR method is used to detect outliers in the data

outliers_flag=FindOutliers(df=df, id_col='MCID', group_col='TREATMENT')
outliers_flag_df=outliers_flag.flag_outliers()
This example counts number of rows with outliers stratified by a defined grouping variable
outliers_flag.count_outliers()
This example removes all outliers
df2=outliers_flag.remove_outliers()
df2.shape
Example usage of DescriptiveStats Class
descriptive_stats = DescriptiveStats(df=df, id_col='MCID', group_col='TREATMENT', positive_class='Yes', continuous_var_summary='median')
Gets statistics for binary and categorical variables and returns a dataframe.
binary_stats_df = descriptive_stats.get_binary_stats()
Gets mean and standard deviation for continuous variables and returns a dataframe.
continuous_stats_mean_df = descriptive_stats.get_continuous_mean_stats()
Gets median and interquartile range for continuous variables and returns a dataframe.
continuous_stats_median_df = descriptive_stats.get_continuous_median_stats()
Computes summary statistics for binary and continuous variables based on defined measure of central tendency. Method returns a dataframe.
descriptive_stats.compute_descriptive_stats()
summary_stats = descriptive_stats.summary_stats()

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc