Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

django-bulk-load

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

django-bulk-load

Bulk load Django models

  • 1.4.3
  • PyPI
  • Socket score

Maintainers
1

Django Bulk Load

Load large batches of Django models into the DB using the Postgres COPY command. This library is a more performant alternative to bulk_create and bulk_update in Django.

Note: Currently, this library only supports Postgres. Other databases may be added in the future.

Install

pip install django-bulk-load

Benchmarks

bulk_update_models vs Django's bulk_update vs django-bulk-update

Results
count: 1,000
bulk_update (Django):             0.45329761505126953
bulk_update (django-bulk-update): 0.1036691665649414
bulk_update_models:               0.04524850845336914

count: 10,000
bulk_update (Django):             6.0840747356414795
bulk_update (django-bulk-update): 2.433042049407959
bulk_update_models:               0.10899758338928223

count: 100,000
bulk_update (Django):             647.6648473739624
bulk_update (django-bulk-update): 619.0643970966339
bulk_update_modelsL               0.9625072479248047

count: 1,000,000
bulk_update (Django):             Does not complete
bulk_update (django-bulk-update): Does not complete
bulk_update_models:               14.923949003219604

See this thread for information on Django performance issues. https://groups.google.com/g/django-updates/c/kAn992Fkk24

Code
models = [TestComplexModel(id=i, integer_field=i, string_field=str(i)) for i in range(count)]

def run_bulk_update_django():
  start = time()
  TestComplexModel.objects.bulk_update(models, fields=["integer_field", "string_field"])
  print(time() - start)
  
def run_bulk_update_library():
  start = time()
  TestComplexModel.objects.bulk_update(models, update_fields=["integer_field", "string_field"])
  print(time() - start)
  
def run_bulk_update_models():
  start = time()
  bulk_update_models(models)
  print(time() - start)

bulk_insert_models vs Django's bulk_create

Results
count: 1,000
bulk_create:        0.048630714416503906
bulk_insert_models: 0.03132152557373047

count: 10,000
bulk_create:        0.45952868461608887
bulk_insert_models: 0.1908433437347412

count: 100,000
bulk_create:        4.875206708908081
bulk_insert_models: 1.764514684677124

count: 1,000,000
bulk_create:        59.16990399360657
bulk_insert_models: 18.651455640792847
Code
models = [TestComplexModel(integer_field=i, string_field=str(i)) for i in range(count)]

def run_bulk_create():
  start = time()
  TestComplexModel.objects.bulk_create(models)
  print(time() - start)
  
def run_bulk_insert_models():
  start = time()
  bulk_insert_models(models)
  print(time() - start)

API

Just import and use the functions below. No need to change settings.py

bulk_insert_models()

INSERT a batch of models. It makes use of the Postgres COPY command to improve speed. If a row already exist, the entire insert will fail. See bulk_load.py for descriptions of all parameters.

from django_bulk_load import bulk_insert_models

bulk_insert_models(
    models: Sequence[Model],
    ignore_conflicts: bool = False,
    return_models: bool = False,
)

bulk_upsert_models()

UPSERT a batch of models. It replicates UPSERTing. By default, it matches existing models using the model pk, but you can specify matching on other fields with pk_field_names. See bulk_load.py for descriptions of all parameters.

from django_bulk_load import bulk_upsert_models

bulk_upsert_models(
    models: Sequence[Model],
    pk_field_names: Sequence[str] = None,
    insert_only_field_names: Sequence[str] = None,
    model_changed_field_names: Sequence[str] = None,
    update_if_null_field_names: Sequence[str] = None,
    update_where: Callable[[Sequence[Field], str, str], Composable] = None,
    return_models: bool = False,
)

bulk_update_models()

UPDATE a batch of models. By default, it matches existing models using the model pk, but you can specify matching on other fields with pk_field_names. If the model is not found in the database, it is ignored. See bulk_load.py for descriptions of all parameters.

from django_bulk_load import bulk_update_models

bulk_update_models(
    models: Sequence[Model],
    update_field_names: Sequence[str] = None,
    pk_field_names: Sequence[str] = None,
    model_changed_field_names: Sequence[str] = None,
    update_if_null_field_names: Sequence[str] = None,
    update_where: Callable[[Sequence[Field], str, str], Composable] = None,
    return_models: bool = False,
)

bulk_insert_changed_models()

INSERTs a new record in the database when a model field has changed in any of compare_field_names, with respect to its latest state, where "latest" is defined by ordering the records for a given primary key by sorting in descending order on the column passed in order_field_name. Does not INSERT a new record if the latest record has not changed. See bulk_load.py for descriptions of all parameters.

from django_bulk_load import bulk_insert_changed_models

bulk_insert_changed_models(
    models: Sequence[Model],
    pk_field_names: Sequence[str],
    compare_field_names: Sequence[str],
    order_field_name=None,
    return_models=None,
)

bulk_select_model_dicts()

Select/Get model dictionaries by filter_field_names. It returns dictionaries, not Django models for performance reasons. This is useful when querying a very large set of models or multiple field IN clauses.

from django_bulk_load import bulk_select_model_dicts

bulk_select_model_dicts(
    model_class: Type[Model],
    filter_field_names: Iterable[str],
    select_field_names: Iterable[str],
    filter_data: Iterable[Sequence],
    select_for_update=False,
    skip_filter_transform=False,
)

Contributing

We are not accepting pull requests from anyone outside Cedar employees at this time. All pull requests will be closed.

Commit Syntax

All PRs must be a single commit and follow the following syntax https://github.com/angular/angular/blob/master/CONTRIBUTING.md#-commit-message-format

Testing

You will need Docker installed and run the following command

./test.sh

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc