Security News
Research
Data Theft Repackaged: A Case Study in Malicious Wrapper Packages on npm
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
|Build Status|
Graphos is a Django app to normalize data to create beautiful charts. It provides a JS agnostic way to work with charts and allows seamless and quick switching between different chart providers.
Flot <http://flotcharts.org>
__Google Charts API <https://developers.google.com/chart/>
__YUI Charts <http://yuilibrary.com/yui/docs/charts/>
__Morris.js <http://morrisjs.github.io/morris.js/>
__Highcharts <http://www.highcharts.com/>
__Matplotlib <http://matplotlib.org/api/pyplot_api.html>
__Flot
- Line chart
- Bar Chart
- Column chart
- Pie chart
- Point Chart
Google Charts
YUI
- Line chart
- Bar chart
- Column chart
- Pie chart
- Area chart
- Spline chart
- Areaspline chart
Morris.js
Highcharts
(You will need to buy a license if you use highcharts for commerical
use)
- Line Chart
- Bar Chart
- Column Chart
- Pie Chart
- Area Chart
C3.js
~~~~~
- Line chart
- Column chart (You need to rotate the axis of bar chart to render
column chart)
- Bar chart
- Donut chart
- Pie chart
- Spline chart
Matplotlib
With Graphos, switching from google's LineChart to yui LineChart can be done within minutes. So would be the case in switching from yui AreaChart to morris AreaChart.
Clone the project
Cd to demo directory
cd django-graphos/demo_project/
Create local settings.
cp demo_project/settings/local.py-dist demo_project/settings/local.py
Install requirements
pip install -r requirements.txt
Run migrate
python manage.py migrate
Run server
python manage.py runserver
The installed demo app shows the various suported chart types.
In case you want to use mongo data while charting, you must have mongodb properly setup and pymongo installed. Make sure mongo server is running.
::
mongod --dbpath ~/data/db
Mongo setup is optional and is not needed to get running with demo project.
Generating a plot requires two things. A DataSource object and a Chart object.
In your view, you do something like this:
::
from graphos.sources.simple import SimpleDataSource
from graphos.renderers.gchart import LineChart
data = [
['Year', 'Sales', 'Expenses'],
[2004, 1000, 400],
[2005, 1170, 460],
[2006, 660, 1120],
[2007, 1030, 540]
]
# DataSource object
data_source = SimpleDataSource(data=data)
# Chart object
chart = LineChart(data_source)
context = {'chart': chart}
return render(request, 'yourtemplate.html', context)
And then in the template:
::
{{ chart.as_html }}
In this example we are planning to use Google chart, as is evident from the import statement in the view, we import gchart.LineChart. So we must also include the google chart javascript in our template.
::
<script type="text/javascript" src="https://www.google.com/jsapi"></script>
<script type="text/javascript">
google.load("visualization", "1", {packages:["corechart"]});
</script>
So the template would look like
::
<script type="text/javascript" src="https://www.google.com/jsapi"></script>
<script type="text/javascript">
google.load("visualization", "1", {packages:["corechart"]});
</script>
{{ chart.as_html }}
If we want to use yui LineChart instead of google LineChart, our view would have:
::
from graphos.renderers.yui import LineChart
chart = LineChart(data_source)
And our template would inclue yui javascript and it would look like:
::
<script src="http://yui.yahooapis.com/3.10.0/build/yui/yui-min.js"></script>
{{ chart.as_html }}
See, how easy it was to switch from gchart to yui. You did not have to write or change a single line of javascript to switch from gchart to yui. All that was taken care of by as_html() of the chart object.
SimpleDataSource
This should be used if you want to generate a chart from Python list.
::
from graphos.sources.simple import SimpleDataSource
data = SimpleDataSource(data=data)
Data could be:
::
data = [
['Year', 'Sales', 'Expenses', 'Items Sold', 'Net Profit'],
['2004', 1000, 400, 100, 600],
['2005', 1170, 460, 120, 710],
['2006', 660, 1120, 50, -460],
['2007', 1030, 540, 100, 490],
]
or it could be
::
data = [
['Year', 'Sales', 'Expenses'],
['2004', 1000, 400],
['2005', 1170, 460],
['2006', 660, 1120],
['2007', 1030, 540],
]
or it could be
::
data = [
['Year', 'Sales', 'Expenses'],
['2004', 1000, 400],
['2005', 1170, 460],
]
You got the idea.
data has to be a list of lists. First row of data tells the headers.
First element of each list elementis the x axis.
This data essentially tells that in year 2004, sales was 1000 units and
expense was 400 units. And in year 2005, sales was 1170 units and
expense was 460 units.
ModelDataSource
~~~~~~~~~~~~~~~
This should be used if you want to generate a chart from a Django
queryset.
::
from graphos.sources.model import ModelDataSource
queryset = Account.objects.all()
data_source = ModelDataSource(queryset,
fields=['year', 'sales'])
This assumes that there is a Django model called Account which has
fields ``year`` and ``sales``. And you plan to plot year on x axis and
sales on y axis.
Or you could say
::
data_source = ModelDataSource(queryset,
fields=['year', 'sales', 'expenses'])
This would plot the yearly sale and yearly expense
CSVDataSource
~~~~~~~~~~~~~
This should be used if you want to generate a chart from a CSV file.
::
from graphos.sources.csv_file import CSVDataSource
csv_file = open("hello.csv")
data_source = CSVDataSource(csv_file)
MongoDataSource
~~~~~~~~~~~~~~~
TODO
Charts
------
We have following charts
- Gchart
- gchart.LineChart
- gchart.BarChart
- gchart.ColumnChart
- gchart.PieChart
- gchart.AreaChart
- gchart.TreeMapChart
- gchart.CandlestickChart
- gchart.GaugeChart
- Yui
- yui.LineChart
- yui.BarChart
- yui.ColumnChart
- yui.PieChart
- yui.AreaChart
- yui.SplineChart
- yui.AreaSplineChart
- Flot
- flot.LineChart
- flot.BarChart
- flot.ColumnChart
- flot.PieChart
- flot.PointChart
- Morris
- morris.LineChart
- morris.BarChart
- morris.AreaChart
- morris.DonutChart
- Highcharts
- highcharts.LineChart
- highcharts.BarChart
- highcharts.ColumnChart
- highcharts.PieChart
- highcharts.AreaChart
Most of the chart providers support LineChart, BarChart, ColumnChart and
PieChart, and it is very easy to switch from specific chart type of one
provider to other. eg: It is super quick to switch from gchart LineChart
to flot LineChart.
More Examples
-------------
Using SimpleDataSource with gchart LineChart
View ^^^^
::
data = [
['Year', 'Sales', 'Expenses'],
[2004, 1000, 400],
[2005, 1170, 460],
[2006, 660, 1120],
[2007, 1030, 540]
]
from graphos.sources.simple import SimpleDataSource
from graphos.renderers.gchart import LineChart
chart = LineChart(SimpleDataSource(data=data))
Template ^^^^^^^^
::
<script type="text/javascript" src="https://www.google.com/jsapi"></script>
<script type="text/javascript">
google.load("visualization", "1", {packages:["corechart"]});
</script>
{{ chart.as_html }}
Using SimpleDataSource with yui LineChart
View
^^^^
::
data = [
['Year', 'Sales', 'Expenses'],
[2004, 1000, 400],
[2005, 1170, 460],
[2006, 660, 1120],
[2007, 1030, 540]
]
from graphos.sources.simple import SimpleDataSource
from graphos.renderers.yui import LineChart
chart = LineChart(SimpleDataSource(data=data))
Template
^^^^^^^^
::
<script src="http://yui.yahooapis.com/3.10.0/build/yui/yui-min.js"></script>
{{ chart.as_html }}
Using SimpleDataSource with yui BarChart
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
View
^^^^
::
data = [
['Year', 'Sales', 'Expenses'],
[2004, 1000, 400],
[2005, 1170, 460],
[2006, 660, 1120],
[2007, 1030, 540]
]
from graphos.sources.simple import SimpleDataSource
from graphos.renderers.yui import BarChart
chart = BarChart(SimpleDataSource(data=data))
Template
^^^^^^^^
::
<script src="http://yui.yahooapis.com/3.10.0/build/yui/yui-min.js"></script>
{{ chart.as_html }}
Using SimpleDataSource with gchart BarChart
View ^^^^
::
data = [
['Year', 'Sales', 'Expenses'],
[2004, 1000, 400],
[2005, 1170, 460],
[2006, 660, 1120],
[2007, 1030, 540]
]
from graphos.sources.simple import SimpleDataSource
from graphos.renderers.gchart import BarChart
chart = BarChart(SimpleDataSource(data=data))
Template ^^^^^^^^
::
<script type="text/javascript" src="https://www.google.com/jsapi"></script>
<script type="text/javascript">
google.load("visualization", "1", {packages:["corechart"]});
</script>
{{ chart.as_html }}
Your rendered chart is contained in a div.
Setting id of chart containing div
You might want to do additional jquery or javascript operations with
your chart containing div. In such case you might want to set an id on
the div. You can do this while instantiating the chart element.
::
chart = gchart.LineChart(html_id='gchart_div')
Setting width and height of chart containing div
You can control the width and height of chart containing div while instantiating the chart element.
::
chart = gchart.LineChart(simple_data_source, height=100, width=100)
Chart specific options
Different chart providers give different options to customise the chart.
Google chart api allows setting title for the rendered chart, see
`Gchart
documentation <https://developers.google.com/chart/interactive/docs/quick_start>`__,
using ``title`` attribute. You can accomplish this by adding a keyword
argument called ``options`` while instantiating the chart element.
::
chart = gchart.LineChart(simple_data_source, height=100, width=100, options={'title': 'Sales growth'})
Google pie chart allows making the chart as 3 dimensional. You can
accomplish this by using keyword argument ``options``.
::
pie_chart = gchart.PieChart(simple_data_source, options={'is3D': True})
Morris.js allows options like lineWidth, smooth etc. You can find more
`here <http://morrisjs.github.io/morris.js/lines.html#lines>`__. You can
accomplish this by using ``options``.
::
chart = morris.LineChart(simple_data_source, options={'lineWidth': 50, 'smooth': False})
Installation
------------
pip install django-graphos
Compatibility
-------------
Graphos is compatible with Python 2.7 and Python 3.3+
`available on pypi <https://pypi.python.org/pypi/django-graphos/>`__
Handling non serializable fields
--------------------------------
You need to override get\_data() of existing DataSource and convert
datetime field into something which could be serialized.
Assuming you are using a Python list as data, then you need to do:
::
from graphos.sources.simple import SimpleDataSource
class MySimpleDataSource(SimpleDataSource):
def get_data(self):
data = super(MySimpleDataSource, self).get_data()
header = data[0]
data_without_header = data[1:]
for row in data_without_header:
# Assuming first column contains datetime
row[0] = row[0].year
data_without_header.insert(0, header)
return data_without_header
And data has
::
d1 = datetime(2015, 7, 8, 1, 1)
d2 = datetime(2016, 7, 8, 3, 1)
data1 = [
['Year', 'Sales', 'Expenses', 'Items Sold', 'Net Profit'],
[d1, 1000, 400, 100, 600],
[d2, 1170, 460, 120, 310],
]
chart = flot.LineChart(MySimpleDataSource(data=data1))
If you are planning to use queryset with ModelDataSource, then you would
create following class
::
from graphos.sources.model import ModelDataSource
class MyModelDataSource(ModelDataSource):
def get_data(self):
data = super(MyModelDataSource, self).get_data()
header = data[0]
data_without_header = data[1:]
for row in data_without_header:
# Assuming second column contains datetime
row[1] = row[1].year
data_without_header.insert(0, header)
return data_without_header
And you would use this class like:
::
queryset = Account.objects.all()
chart = flot.LineChart(MyModelDataSource(queryset=queryset, fields=['sales', 'datetime_field','expenses']))
Creating new DataSource
-----------------------
A DataSource is a class which has these three methods.
::
get_data
get_header
get_first_column
``get_header`` is used by a ``Renderer`` to create the labels.
``get_first_column`` is used to set the x axis labels ``get_data`` is
used to get the data for display. It should always return a nested list.
Eg:
::
[
['Year', 'Sales', 'Expenses'],
[2004, 1000, 400],
[2005, 1170, 460],
[2006, 660, 1120],
[2007, 1030, 540]
]
If you create a class extending ``SimpleDataSource``, and implement
``get_data``. You get ``get_header`` and ``get_first_column`` for free.
Creating new Renderer
---------------------
A renderer is a class which takes a ``DataSource`` and can convert it to
the html to display.
The only required method on a ``Renderer`` is ``as_html``. This will
convert the data to a format which can display the chart.
Generally you will convert the data to json and pass it to the template
which you return.
License
-------
BSD
.. |Build Status| image:: https://travis-ci.org/agiliq/django-graphos.png
:target: https://travis-ci.org/agiliq/django-graphos
FAQs
Django app to provide a JS agnostic way to work with charts.
We found that django-graphos demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 2 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Research
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
Research
Security News
Attackers used a malicious npm package typosquatting a popular ESLint plugin to steal sensitive data, execute commands, and exploit developer systems.
Security News
The Ultralytics' PyPI Package was compromised four times in one weekend through GitHub Actions cache poisoning and failure to rotate previously compromised API tokens.