Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

dostoevsky

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

dostoevsky

Sentiment analysis library for russian language

  • 0.6.0
  • PyPI
  • Socket score

Maintainers
1

Dostoevsky Build Status

Sentiment analysis library for russian language

Install

Please note that Dostoevsky supports only Python 3.6+ on both Linux and Windows

$ pip install dostoevsky

Social network model [FastText]

This model was trained on RuSentiment dataset and achieves up to ~0.71 F1 score.

Usage

First of all, you'll need to download binary model:

$ python -m dostoevsky download fasttext-social-network-model

Then you can use sentiment analyzer:

from dostoevsky.tokenization import RegexTokenizer
from dostoevsky.models import FastTextSocialNetworkModel

tokenizer = RegexTokenizer()
tokens = tokenizer.split('всё очень плохо')  # [('всё', None), ('очень', None), ('плохо', None)]

model = FastTextSocialNetworkModel(tokenizer=tokenizer)

messages = [
    'привет',
    'я люблю тебя!!',
    'малолетние дебилы'
]

results = model.predict(messages, k=2)

for message, sentiment in zip(messages, results):
    # привет -> {'speech': 1.0000100135803223, 'skip': 0.0020607432816177607}
    # люблю тебя!! -> {'positive': 0.9886782765388489, 'skip': 0.005394937004894018}
    # малолетние дебилы -> {'negative': 0.9525841474533081, 'neutral': 0.13661839067935944}]
    print(message, '->', sentiment)

If you use the library in a research project, please include the following citation for the RuSentiment data:

@inproceedings{rogers-etal-2018-rusentiment,
    title = "{R}u{S}entiment: An Enriched Sentiment Analysis Dataset for Social Media in {R}ussian",
    author = "Rogers, Anna  and
      Romanov, Alexey  and
      Rumshisky, Anna  and
      Volkova, Svitlana  and
      Gronas, Mikhail  and
      Gribov, Alex",
    booktitle = "Proceedings of the 27th International Conference on Computational Linguistics",
    month = aug,
    year = "2018",
    address = "Santa Fe, New Mexico, USA",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/C18-1064",
    pages = "755--763",
}

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc