Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

easy-gui

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

easy-gui

Easy Python GUI applications (tkinter wrapper)

  • 0.4.10
  • PyPI
  • Socket score

Maintainers
1

easy_gui

easy_gui is a high-level Python library designed to simplify the process of creating GUI applications by wrapping tkinter. Solving problems is tricky enough... using our solutions should be EASY!

Features

  • Quickly and easily build a GUI by subclassing easy_gui.EasyGUI
  • Add easy_gui Widget objects (check out widgets.py for details on each):
    • Button, CanvasButton, Label, Entry, LabelEntry, CheckBox, DropDown, ListBox, Table, Tree, Slider, MatplotlibPlot, Canvas, ProgressBar, ScrolledText, StdOutBox, DatePicker
  • Create one or more Sections (including nested Sections) to help organize GUI elements
  • CSS Grid-style layouts
  • Simply create a popup window using EasyGUI.popup()
  • Simply create popup tooltips for widgets using Widget.add_tooltip()
  • Multithreading for GUI responsiveness (set "separate_thread=True" when creating a Button Widget)
  • Easy to install with few dependancies - just matplotlib (but you want to make plots anyway, right?!)

Quickstart

  • Installing easy_gui is easy enough. Simply use pip:
pip install easy_gui
  • To create an application with easy_gui, subclass the easy_gui.EasyGUI class and add elements in the init method.

  • Here is the most simple example:

import easy_gui

class GUI(easy_gui.EasyGUI):
    def __init__(self):
        self.add_widget(type='label', text='Example Label')
        self.add_widget(type='button', text='Button', command_func=lambda x: print('TEST'))

application = GUI()
  • Now for a more substantial example that also shows CSS-style layout capabilities. See the script examples/simple_gui.py for this code with additional explanatory comments:
import easy_gui

class GUI(easy_gui.EasyGUI):
    def __init__(self):
        self.title('Animal Diet Generator')
        self.geometry("425x170")

        section = self.add_section('example_section')
        section.configure_grid(['title             title         output',
                                'label1            entry1        output',
                                'label2            entry2        output',
                                'run_button      run_button      output'])
        section.add_widget(type='label', text='Animal Diet Generator!', grid_area='title')
        section.add_widget(type='label', text='Animal:', grid_area='label1')
        self.animal = section.add_widget(type='entry', grid_area='entry1')
        section.add_widget(type='label', text='Food:', grid_area='label2')
        self.food = section.add_widget(type='entry', grid_area='entry2')
        section.add_widget(type='stdout', grid_area='output')
        section.add_widget(type='button', text='Generate Diet!', grid_area='run_button', command_func=self.diet)

    def diet(self, event):
        print(f'The {self.animal.get()} likes to eat {self.food.get()}!')

application = GUI()

More Firepower

The toy examples above show the basics for getting started. Below is a more robust example for what a simple tool could look like. This example highlights a number of powerful features such as:

  • CSS-style grid layouts (literally make a picture of what you want to see with a list of strings)
  • Flexible, high-level Widgets that are quick to add or manipulate
  • Quick and easy popup window using with self.popup() as popup:
import easy_gui
import random
from matplotlib.figure import Figure


class GUI(easy_gui.EasyGUI):
  def __init__(self):
      self.title('Data Generator')
      self.geometry("800x550")

      self.configure_grid(['check   data_gen   info',
                                 'tree       tree        data',
                                 'tree       tree        plot'])

      self.parabolic = self.add_widget('checkbox', 'Parabolic Data', grid_area='check')
      self.add_widget('btn', 'Generate New Data', grid_area='data_gen', use_ttk=True, command_func=self.generate_data)
      self.add_key_trigger('new', self.generate_data)
      print('Also can generate new data by simply typing "new"!')

      info = self.add_section(grid_area='info')
      info.configure_grid([' .        title     . ',
                                 'mean   min  max'])
      info.add_widget('lbl', 'Data Information', underline=True, bold=True, grid_area='title')
      self.mean = info.add_widget('lbl', 'Mean:', grid_area='mean')
      self.min = info.add_widget('lbl', 'Minimum:', grid_area='min')
      self.max = info.add_widget('lbl', 'Maximum:', grid_area='max')

      self.tree = self.add_widget('tree', grid_area='tree', height=10)
      self.tree.bind_select(self.refresh_display)

      self.table = self.add_widget('table', rows=2, columns=11, border=True, grid_area='data')
      self.table[1, 1] = 'X Values'
      self.table[2, 1] = 'Y Values'

      self.plot = self.add_widget('matplotlib', grid_area='plot')

      self.add_menu(commands={}, cascades={'Data': {'Save Data to CSV': self.save_data}})

      self.data_sets = []  # store all generated datasets in this list
      self.generate_data()  # start with one initial dataset


  def current_data(self):
      name, x_vals, y_vals = [tup for tup in self.data_sets if tup[0] == self.tree.current_row['text']][0]
      return name, x_vals, y_vals

  def refresh_tree(self, *args):
      self.tree.clear()
      for name, x_vals, y_vals in self.data_sets:
          self.tree.insert_row(name)
      self.tree.select_first_row()
      self.refresh_display()

  def refresh_display(self, *args):
      name, x_vals, y_vals = self.current_data()

      # Update summary info at top
      self.mean.set(f'Mean: {round(sum(y_vals) / len(y_vals), 1)}')
      self.min.set(f'Minimum: {min(y_vals)}')
      self.max.set(f'Maximum: {max(y_vals)}')

      # Update table with current data
      for index, (x, y) in enumerate(zip(x_vals, y_vals)):
          self.table[1, index+2] = x
          self.table[2, index+2] = y

      # Update the plot
      fig = Figure(figsize=(5, 3), dpi=100)
      ax = fig.add_subplot(111)
      ax.set_title('Plot of X and Y Values')
      ax.scatter(x_vals, y_vals)
      self.plot.draw_plot(mpl_figure=fig)

  def generate_data(self, *args):
      x_vals = list(range(1, 11))
      if not self.parabolic.get():
          y_vals = [round(x + random.random() * 2, 1) for x in x_vals]
      else:
          y_vals = [round((x - 5 + random.random()) ** 2, 1) for x in x_vals]
      self.data_sets.append((f'Dataset {len(self.data_sets)+1}' + (' (Parabolic)' if self.parabolic.get() else ''), x_vals, y_vals))
      self.refresh_tree()

      with self.popup() as popup:
          popup.geometry('200x80')
          popup.add_widget('lbl', 'New data generated!', bold=True)

  def save_data(self, *args):
      with open('Moderate GUI Data.csv', 'w') as f:
          f.write('Dataset,X_Values,Y_Values\n')
          for name, x_vals, y_vals in self.data_sets:
              for x, y in zip(x_vals, y_vals):
                  f.write(f'{name},{x},{y}\n')
      print('Data saved to CSV file!')



if __name__ == '__main__':
  GUI()

License

MIT

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc