EconKit - Function Descriptions
econkit
is a Python library that provides various statistical and econometric analysis tools, including descriptive statistics, correlation matrices, and tests for stationarity and autocorrelation.
Functions
Descriptive Statistics
descriptives(data)
Computes descriptive statistics for each numeric column in a DataFrame.
Parameters:
data
: pandas.DataFrame
containing the data to be analyzed.
Returns:
- None. Prints a summary table of the descriptive statistics.
Example Usage:
import pandas as pd
from econkit import econometrics as ec
df = pd.read_csv('your_data.csv')
ec.descriptives(df)
Correlation Matrix
correlation(df, method='Pearson', p=False)
Calculates and prints the correlation matrix and p-values for numeric columns in the provided DataFrame. Supports Pearson, Spearman, and Kendall correlation methods.
Parameters:
df
: pandas.DataFrame
containing the data to be analyzed.method
: str
(optional). Method of correlation ('Pearson', 'Spearman', or 'Kendall'). Default is 'Pearson'.p
: bool
(optional). If True, p-value matrix is also printed; if False, only the correlation matrix is printed.
Returns:
- None. Prints the correlation matrix and optionally the p-value matrix.
Example Usage:
import pandas as pd
from econkit import econometrics as ec
df = pd.read_csv('your_data.csv')
ec.correlation(df, method='Spearman', p=True)
Augmented Dickey-Fuller (ADF) Test
adf(dataframe, maxlag=None, regression='c', autolag='AIC', handle_na='drop')
Performs the ADF test on each column in the DataFrame and returns a summary table.
Parameters:
dataframe
: pandas.DataFrame
containing the data to be tested.maxlag
: int
(optional). Maximum number of lags to use.regression
: str
(optional). Type of regression trend ('c', 'ct', 'ctt', 'nc'). Default is 'c'.autolag
: str
(optional). Method for lag length selection ('AIC', 'BIC', 't-stat').handle_na
: str
(optional). How to handle missing values ('drop' or 'fill').
Returns:
- None. Prints a summary table of the ADF test results.
Example Usage:
import pandas as pd
from econkit import econometrics as ec
df = pd.read_csv('your_data.csv')
ec.adf(df)
KPSS Test
kpss(dataframe, regression='c', nlags='auto', handle_na='drop')
Performs the KPSS test on each column in the DataFrame and returns a summary table.
Parameters:
dataframe
: pandas.DataFrame
containing the data to be tested.regression
: str
(optional). Type of regression trend ('c' or 'ct'). Default is 'c'.nlags
: str
or int
(optional). Number of lags to use. Default is 'auto'.handle_na
: str
(optional). How to handle missing values ('drop' or 'fill').
Returns:
- None. Prints a summary table of the KPSS test results.
Example Usage:
import pandas as pd
from econkit import econometrics as ec
df = pd.read_csv('your_data.csv')
ec.kpss(df)
Durbin-Watson Test
dw(data)
Performs the Durbin-Watson autocorrelation test and Ljung-Box test for each column of the dataset.
Parameters:
data
: pandas.DataFrame
containing the time series data.
Returns:
- None. Prints a summary table of the Durbin-Watson test results.
Example Usage:
import pandas as pd
from econkit import econometrics as ec
df = pd.read_csv('your_data.csv')
ec.dw(df)
Normality Tests
normality_tests(data, pvalue=False)
Performs normality tests (Shapiro-Wilk and Kolmogorov-Smirnov) on each column of a DataFrame and displays results as a formatted table.
Parameters:
data
: pandas.DataFrame
containing the numerical data.pvalue
: bool
(optional). If True, displays the p-value matrix along with the test results. Default is False.
Returns:
- None. Prints the results matrix and optionally the p-value matrix.
Example Usage:
import pandas as pd
from econkit import econometrics as ec
df = pd.read_csv('your_data.csv')
ec.normality_tests(df, pvalue=True)
Random Number Generator
random_number_generator(num_vars, num_random, distribution, mean=0, std_dev=1, seed=None, lower=None, upper=None, p=None, n_trials=None, lambda_param=None, start=None, stop=None, step=None, repeat_each=None, repeat_sequence=None)
Generates random numbers based on the specified distribution and parameters.
Parameters:
num_vars
: int
. Number of variables (columns) to generate.num_random
: int
. Number of random values per variable.distribution
: str
. The distribution type ('normal', 'uniform', 'binomial', 'bernoulli', 'poisson', 'patterned').mean
: float
. Mean for the normal distribution. Default is 0.std_dev
: float
. Standard deviation for the normal distribution. Default is 1.lower
: float
. Lower bound for the uniform distribution.upper
: float
. Upper bound for the uniform distribution.p
: float
. Probability for Bernoulli or Binomial distributions.n_trials
: int
. Number of trials for the Binomial distribution.lambda_param
: float
. Lambda parameter for the Poisson distribution.start
: float
. Start value for the patterned distribution.stop
: float
. Stop value for the patterned distribution.step
: float
. Step size for the patterned distribution.repeat_each
: int
. Number of times to repeat each number in the patterned distribution.repeat_sequence
: int
. Number of times to repeat the entire sequence.
Returns:
pandas.DataFrame
. A DataFrame containing the generated random numbers.
Example Usage:
from econkit import econometrics as ec
random_data = ec.random_number_generator(num_vars=2, num_random=10, distribution='normal', mean=0, std_dev=1, seed=42)
print(random_data)
Combine DataFrames
combine_dataframes(column_name, *dataframes)
Combines multiple DataFrames based on a specified column into a new DataFrame, aligning by the index.
Parameters:
column_name
: str
. The column to extract from each DataFrame.*dataframes
: Multiple pandas DataFrames passed as positional arguments.
Returns:
pandas.DataFrame
. A new DataFrame combining the specified columns from all input DataFrames.
Example Usage:
import pandas as pd
from econkit import econometrics as ec
df1 = pd.read_csv('data1.csv')
df2 = pd.read_csv('data2.csv')
combined_df = ec.combine_dataframes('Close', df1, df2)
print(combined_df)
Financial Data Retrieval
data(ticker_symbol, start_date, end_date, interval)
Downloads financial data from Yahoo Finance and calculates daily returns.
Parameters:
ticker_symbol
: str
. The stock ticker symbol.start_date
: str
. Start date in 'dd-mm-yyyy' format.end_date
: str
. End date in 'dd-mm-yyyy' format.interval
: str
. Data interval (e.g., '1d', '1wk', '1mo').
Returns:
pandas.DataFrame
containing the stock data and calculated returns.
Example Usage:
from econkit import finance as f
start = '01-06-2024'
end = '07-06-2024'
interval = '1d'
df = f.data('AAPL', start, end, interval)
print(df.head())
Usage Notes
- Ensure your data is clean and properly formatted before using these functions.
- Some functions handle missing values; specify your preferred method using the
handle_na
parameter. - For time series analysis, ensure your data is indexed by date.
For further details, refer to the function docstrings in the source code or the examples provided above.