Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

embeddings

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

embeddings

Pretrained word embeddings in Python.

  • 0.0.8
  • PyPI
  • Socket score

Maintainers
1

Embeddings

.. image:: https://readthedocs.org/projects/embeddings/badge/?version=latest :target: http://embeddings.readthedocs.io/en/latest/?badge=latest :alt: Documentation Status .. image:: https://travis-ci.org/vzhong/embeddings.svg?branch=master :target: https://travis-ci.org/vzhong/embeddings

Embeddings is a python package that provides pretrained word embeddings for natural language processing and machine learning.

Instead of loading a large file to query for embeddings, embeddings is backed by a database and fast to load and query:

.. code-block:: python

>>> %timeit GloveEmbedding('common_crawl_840', d_emb=300)
100 loops, best of 3: 12.7 ms per loop

>>> %timeit GloveEmbedding('common_crawl_840', d_emb=300).emb('canada')
100 loops, best of 3: 12.9 ms per loop

>>> g = GloveEmbedding('common_crawl_840', d_emb=300)

>>> %timeit -n1 g.emb('canada')
1 loop, best of 3: 38.2 µs per loop

Installation

.. code-block:: sh

pip install embeddings  # from pypi
pip install git+https://github.com/vzhong/embeddings.git  # from github

Usage

Upon first use, the embeddings are first downloaded to disk in the form of a SQLite database. This may take a long time for large embeddings such as GloVe. Further usage of the embeddings are directly queried against the database. Embedding databases are stored in the $EMBEDDINGS_ROOT directory (defaults to ~/.embeddings). Note that this location is probably undesirable if your home directory is on NFS, as it would slow down database queries significantly.

.. code-block:: python

from embeddings import GloveEmbedding, FastTextEmbedding, KazumaCharEmbedding, ConcatEmbedding

g = GloveEmbedding('common_crawl_840', d_emb=300, show_progress=True)
f = FastTextEmbedding()
k = KazumaCharEmbedding()
c = ConcatEmbedding([g, f, k])
for w in ['canada', 'vancouver', 'toronto']:
    print('embedding {}'.format(w))
    print(g.emb(w))
    print(f.emb(w))
    print(k.emb(w))
    print(c.emb(w))

Docker

If you use Docker, an image prepopulated with the Common Crawl 840 GloVe embeddings and Kazuma Hashimoto's character ngram embeddings is available at vzhong/embeddings <https://hub.docker.com/r/vzhong/embeddings>_. To mount volumes from this container, set $EMBEDDINGS_ROOT in your container to /opt/embeddings.

For example:

.. code-block:: bash

docker run --volumes-from vzhong/embeddings -e EMBEDDINGS_ROOT='/opt/embeddings' myimage python train.py

Contribution

Pull requests welcome!

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc