Research
Security News
Malicious npm Packages Inject SSH Backdoors via Typosquatted Libraries
Socket’s threat research team has detected six malicious npm packages typosquatting popular libraries to insert SSH backdoors.
Package for eye tracking algorithm allowing for development of gaze controlled computer interface
EyeGestures is open source eyetracking software/library using native webcams and phone camers for achieving its goal. The aim of library is to bring accessibility of eye-tracking and eye-driven interfaces without requirement of obtaining expensive hardware.
Our Mission!
📢📢 We are looking for business partnerships and sponsors! 📢📢
For enterprise avoiding GPL3 licensing there is commercial license!
We offer custom integration and managed services. For businesses requiring invoices message us contact@eyegestures.com
.
Sponsor us and we can add your link, banner or other promo materials!
Subscribe and get access to our software:
python3 -m pip install eyeGestures
[!WARNING] some users report that mediapipe, scikit-learn or opencv is not installing together with eyegestures. To fix it, just install it with pip.
python3 examples/simple_example.py
python3 examples/simple_example_v2.py
from eyeGestures.utils import VideoCapture
from eyeGestures.eyegestures import EyeGestures_v2
# Initialize gesture engine and video capture
gestures = EyeGestures_v2()
cap = VideoCapture(0)
calibrate = True
screen_width = 500
screen_height= 500
# Process each frame
while True:
ret, frame = cap.read()
event, cevent = gestures.step(frame,
calibrate,
screen_width,
screen_height,
context="my_context")
if event:
cursor_x, cursor_y = event.point[0], event.point[1]
fixation = event.fixation
# calibration_radius: radius for data collection during calibration
You can customize your calibration points/map to fit your solutions. Simple copy snippet below, and place your calibration poitns on x,y planes from 0.0 to 1.0. It will be then automatically scaled to your display.
gestures = EyeGestures_v2()
gestures.uploadCalibrationMap([[0,0],[0,1],[1,0],[1,1]])
V2 is two stage tracker. It runs V1 under the hood but then uses it as feature extractor for V2 machine learning component, and combines both outputs to generate new gaze point. It is possible to control how much V1 affects V2 by:
gestures.setClassicImpact(N) # setting N = 2 is working best for my testing
This makes that sample obtained from V2 is averaged with N times sample from V1 (same sample copied that many times). In outcome having V2 impacting output in 1/N+1
and V1 N/N+1
.
It is also worth to know that you can enable hidden calibration for V1 (same calibration when using only V1, but now it is invisible to user):
gestures.enableCNCalib()
from eyeGestures.utils import VideoCapture
from eyeGestures.eyegestures import EyeGestures_v1
# Initialize gesture engine with RoI parameters
gestures = EyeGestures_v1()
cap = VideoCapture(0)
ret, frame = cap.read()
calibrate = True
screen_width = 500
screen_height= 500
# Obtain estimations from camera frames
event, cevent = gestures.estimate(
frame,
"main",
calibrate, # set calibration - switch to False to stop calibration
screen_width,
screen_height,
0, 0, 0.8, 10
)
if event:
cursor_x, cursor_y = event.point[0], event.point[1]
fixation = event.fixation
# calibration_radius: radius for data collection during calibration
Feel free to copy and paste the relevant code snippets for your project.
If you are building publicly available product, and have no commercial license, please mention us somewhere in your interface.
mediapipe
, scikit-learn
or opencv
is not installing together with eyegestures
. To fix it, just install it with pip
.We will be extremely grateful for your support: it helps to keep server running + fuels my brain with coffee.
Support project on Polar (if you want to help we provide access to alphas versions and premium content!):
FAQs
Package for eye tracking algorithm allowing for development of gaze controlled computer interface
We found that eyeGestures demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Research
Security News
Socket’s threat research team has detected six malicious npm packages typosquatting popular libraries to insert SSH backdoors.
Security News
MITRE's 2024 CWE Top 25 highlights critical software vulnerabilities like XSS, SQL Injection, and CSRF, reflecting shifts due to a refined ranking methodology.
Security News
In this segment of the Risky Business podcast, Feross Aboukhadijeh and Patrick Gray discuss the challenges of tracking malware discovered in open source softare.