![Maven Central Adds Sigstore Signature Validation](https://cdn.sanity.io/images/cgdhsj6q/production/7da3bc8a946cfb5df15d7fcf49767faedc72b483-1024x1024.webp?w=400&fit=max&auto=format)
Security News
Maven Central Adds Sigstore Signature Validation
Maven Central now validates Sigstore signatures, making it easier for developers to verify the provenance of Java packages.
Face recognition python library(tensorflow, opencv).
try facelib --help
to discover more
foo@bar:~$ python3 -m facelib train train_images/ lotr
Current pipeline: ssd_int8_cpu, mobilenetv2_fp32_cpu, densenet_fp32_cpu
Classifier named `lotr` succesfully trained and saved.
Image Name | Image |
---|---|
train_images/ian_mckellen/0.jpg | <img src=https://github.com/kutayyildiz/facelib/raw/master/facelib/_demo/lotr/train_images/ian_mckellen/0.jpg width=200 height=100> |
train_images/seanastin/0.jpg | ![]() |
foo@bar:~$ python3 -m facelib predict test_images/ -clf lotr -c -p
Current pipeline: ssd_int8_cpu, mobilenetv2_fp32_cpu, densenet_fp32_cpu
1.jpg
├───10 faces detected
├───['billy_boyd', 'sean_astin', 'viggo_mortensen', 'elijah_wood', 'liv_tyler', 'dominic_monaghan', 'sean_bean', 'ian_mckellen', 'peter_jackson', 'orlando_bloom']
2.jpg
├───5 faces detected
├───['dominic_monaghan', 'billy_boyd', 'elijah_wood', 'sean_astin', 'peter_jackson']
3.jpg
├───6 faces detected
├───['orlando_bloom', 'dominic_monaghan', 'john_rhys_davies', 'sean_astin', 'elijah_wood', 'billy_boyd']
0.jpeg
├───5 faces detected
├───['dominic_monaghan', 'orlando_bloom', 'elijah_wood', 'liv_tyler', 'billy_boyd']
Folder structure:
test_images/
├──0.jpeg
├──1.jpg
├──2.jpg
├──3.jpg
Generated folders/files:
test_images_facelib_cropped/
├───elijah_wood/
├───├──2_2.jpg
├───├──3_1.jpg
├───├──4_3.jpg
├───liv_tyler/
├───├──3_0.jpg
├───├──4_1.jpg
...
Image Name | Image |
---|---|
test_images_facelib_cropped/billy_boyd/0_1.jpg | ![]() |
test_images_facelib_cropped/liv_tyler/4_1.jpg | ![]() |
test_images_facelib_cropped/elijah_wood/3_1.jpg | ![]() |
test_images_facelib_plotted/1.jpg | ![]() |
from facelib import facerec
import cv2
# You can use face_detector, landmark_detector or feature_extractor individually using .predict method. e.g.(bboxes = facedetector.predict(img))
face_detector = facerec.SSDFaceDetector()
landmark_detector = facerec.LandmarkDetector()
feature_extractor = facerec.FeatureExtractor()
pipeline = facerec.Pipeline(face_detector, landmark_detector, feature_extractor)
path_img = './path_to_some_image.jpg'
img = cv2.imread(path_img)
img = img[...,::-1] # cv2 returns bgr format but every method inside this package takes rgb format
bboxes, landmarks, features = pipeline.predict(img)
# Note that values returned (bboxes and landmarks) are in fraction.[0,1]
pip3 install facelib
To use facelib.facerec package use the following bash command to install tflite-runtime pip package.
python3 -m facelib --install-tflite
or you can install from tensorflow.org
Tensorflow is required for facelib.dev package. If you wish you can download facelib with tensorflow using the following command.
pip3 install facelib[dev]
Feature extraction models are trained using insightfaces MS1M-Arcface.
Landmark Detection models are trained using VggFace2.
WiderFace | Yang, Shuo, Ping Luo, Chen Change Loy, and Xiaoou Tang. “WIDER FACE: A Face Detection Benchmark.” ArXiv:1511.06523 [Cs], November 20, 2015. https://arxiv.org/abs/1511.06523 |
ArcFace | Deng, Jiankang, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. “ArcFace: Additive Angular Margin Loss for Deep Face Recognition.” ArXiv:1801.07698 [Cs], January 23, 2018. https://arxiv.org/abs/1801.07698 |
MobileFaceNet | Chen, Sheng, Yang Liu, Xiang Gao, and Zhen Han. “MobileFaceNets: Efficient CNNs for Accurate Real-Time Face Verification on Mobile Devices.” CoRR abs/1804.07573 (2018). http://arxiv.org/abs/1804.07573 |
VggFace2 | Cao, Qiong, Li Shen, Weidi Xie, Omkar M. Parkhi, and Andrew Zisserman. “VGGFace2: A Dataset for Recognising Faces across Pose and Age.” ArXiv:1710.08092 [Cs], October 23, 2017. http://arxiv.org/abs/1710.08092 |
DenseNet | G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely Connected Convolutional Networks,” arXiv:1608.06993 [cs], Jan. 2018. http://arxiv.org/abs/1608.06993 |
GoldenRatio (face alignment) | M. Hassaballah, K. Murakami, and S. Ido, “Face detection evaluation: a new approach based on the golden ratio,” SIViP, vol. 7, no. 2, pp. 307–316, Mar. 2013. http://link.springer.com/10.1007/s11760-011-0239-3 |
SqueezeNet | F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size,” arXiv:1602.07360 [cs], Feb. 2016. http://arxiv.org/abs/1602.07360 |
MobileNet | A. G. Howard et al., “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications,” arXiv:1704.04861 [cs], Apr. 2017. http://arxiv.org/abs/1704.04861 |
MobileNetV2 | M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “MobileNetV2: Inverted Residuals and Linear Bottlenecks,” arXiv:1801.04381 [cs], Jan. 2018. http://arxiv.org/abs/1801.04381 |
CosFace | H. Wang et al., “CosFace: Large Margin Cosine Loss for Deep Face Recognition,” arXiv:1801.09414 [cs], Jan. 2018. http://arxiv.org/abs/1801.09414 |
SphereFace | W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song, “SphereFace: Deep Hypersphere Embedding for Face Recognition,” arXiv:1704.08063 [cs], Apr. 2017. http://arxiv.org/abs/1704.08063 |
Bottleneck Layer | K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” arXiv:1512.03385 [cs], Dec. 2015. http://arxiv.org/abs/1512.03385 |
MS-Celeb-1M | Y. Guo, L. Zhang, Y. Hu, X. He, and J. Gao, “MS-Celeb-1M: A Dataset and Benchmark for Large-Scale Face Recognition,” arXiv:1607.08221 [cs], Jul. 2016. http://arxiv.org/abs/1607.08221 |
DisturbLabel | arXiv:1605.00055 [cs.CV] |
Single Shot Detector | [1]W. Liu et al., “SSD: Single Shot MultiBox Detector,” arXiv:1512.02325 [cs], Dec. 2016. https://arxiv.org/abs/1512.02325 |
Insightface | https://github.com/deepinsight/insightface |
Tensorflow | https://github.com/tensorflow/tensorflow |
Tensorflow-Addons | https://github.com/tensorflow/addons |
Insightface-DatasetZoo | https://github.com/deepinsight/insightface/wiki/Dataset-Zoo |
Tensorflow-ModelZoo | https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md |
Cascade Data | https://github.com/opencv/opencv/tree/master/data |
TFLite Python | https://www.tensorflow.org/lite/guide/python |
FAQs
Face Recognition (train/test/deploy)(tensorflow/tflite/keras/edgetpu)
We found that facelib demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Maven Central now validates Sigstore signatures, making it easier for developers to verify the provenance of Java packages.
Security News
CISOs are racing to adopt AI for cybersecurity, but hurdles in budgets and governance may leave some falling behind in the fight against cyber threats.
Research
Security News
Socket researchers uncovered a backdoored typosquat of BoltDB in the Go ecosystem, exploiting Go Module Proxy caching to persist undetected for years.