Security News
Fluent Assertions Faces Backlash After Abandoning Open Source Licensing
Fluent Assertions is facing backlash after dropping the Apache license for a commercial model, leaving users blindsided and questioning contributor rights.
Tools for processing FIB-SEM data and annotations generated at Janelia Research Campus
This package is currently distributed via pip. We are probably going to put it on conda eventually.
pip install fibsem_tools
The bulk of this libary is a collection of python functions that provide a uniform interface to a variety of file + metadata formats used for storing FIB-SEM datasets. The following file formats are supported:
Format | Access mode | Storage backend |
---|---|---|
n5 | r/w | local, s3, gcs (via fsspec) |
zarr | r/w | local, s3, gcs (via fsspec) |
hdf5 | r | local |
mrc | r | local |
dat | r | local |
Because physical coordinates and metadata are extremely important for imaging data, this library uses the DataArray
datastructure from xarray
to represent FIB-SEM data as arrays with spatial coordinates + metadata. E.g.,
>>> from fibsem_tools import read_xarray, read
>>> from rich import print # pretty printing
>>> creds = {'anon': True} # anonymous credentials for s3
>>> group_url = 's3://janelia-cosem-datasets/jrc_sum159-1/jrc_sum159-1.n5/em/fibsem-uint16/' # path to a group of arrays on s3
>>> group = read(url, storage_options=creds) # this returns a zarr group, which in this case is a collection of arrays
>>> print(tuple(group.arrays())) # this shows all the arrays in the group
(
('s0', <zarr.core.Array '/em/fibsem-uint16/s0' (7632, 2800, 16000) uint16 read-only>),
('s1', <zarr.core.Array '/em/fibsem-uint16/s1' (3816, 1400, 8000) uint16 read-only>),
('s2', <zarr.core.Array '/em/fibsem-uint16/s2' (1908, 700, 4000) uint16 read-only>),
('s3', <zarr.core.Array '/em/fibsem-uint16/s3' (954, 350, 2000) uint16 read-only>),
('s4', <zarr.core.Array '/em/fibsem-uint16/s4' (477, 175, 1000) uint16 read-only>),
('s5', <zarr.core.Array '/em/fibsem-uint16/s5' (239, 88, 500) uint16 read-only>)
)
>>> tree = read_xarray(url, storage_options=creds) # read the group as a DataTree, a collection of xarray objects
>>> print(tree)
DataTree('fibsem-uint16', parent=None)
│ Dimensions: ()
│ Data variables:
│ *empty*
│ Attributes:
│ axes: ['x', 'y', 'z']
│ multiscales: [{'datasets': [{'path': 's0', 'transform': {'axes': ['z...
│ pixelResolution: {'dimensions': [4.0, 4.0, 4.56], 'unit': 'nm'}
│ scales: [[1, 1, 1], [2, 2, 2], [4, 4, 4], [8, 8, 8], [16, 16, 1...
│ units: ['nm', 'nm', 'nm']
├── DataTree('s0')
│ Dimensions: (z: 7632, y: 2800, x: 16000)
│ Coordinates:
│ * z (z) float64 0.0 4.56 9.12 13.68 ... 3.479e+04 3.479e+04 3.48e+04
│ * y (y) float64 0.0 4.0 8.0 12.0 ... 1.119e+04 1.119e+04 1.12e+04
│ * x (x) float64 0.0 4.0 8.0 12.0 ... 6.399e+04 6.399e+04 6.4e+04
│ Data variables:
│ data (z, y, x) uint16 dask.array<chunksize=(384, 384, 384), meta=np.ndarray>
├── DataTree('s1')
│ Dimensions: (z: 3816, y: 1400, x: 8000)
│ Coordinates:
│ * z (z) float64 2.28 11.4 20.52 29.64 ... 3.478e+04 3.479e+04 3.48e+04
│ * y (y) float64 2.0 10.0 18.0 26.0 ... 1.118e+04 1.119e+04 1.119e+04
│ * x (x) float64 2.0 10.0 18.0 26.0 ... 6.398e+04 6.399e+04 6.399e+04
│ Data variables:
│ data (z, y, x) uint16 dask.array<chunksize=(384, 384, 384), meta=np.ndarray>
├── DataTree('s2')
│ Dimensions: (z: 1908, y: 700, x: 4000)
│ Coordinates:
│ * z (z) float64 6.84 25.08 43.32 ... 3.475e+04 3.477e+04 3.479e+04
│ * y (y) float64 6.0 22.0 38.0 54.0 ... 1.116e+04 1.117e+04 1.119e+04
│ * x (x) float64 6.0 22.0 38.0 54.0 ... 6.396e+04 6.397e+04 6.399e+04
│ Data variables:
│ data (z, y, x) uint16 dask.array<chunksize=(384, 384, 384), meta=np.ndarray>
├── DataTree('s3')
│ Dimensions: (z: 954, y: 350, x: 2000)
│ Coordinates:
│ * z (z) float64 15.96 52.44 88.92 ... 3.471e+04 3.474e+04 3.478e+04
│ * y (y) float64 14.0 46.0 78.0 110.0 ... 1.112e+04 1.115e+04 1.118e+04
│ * x (x) float64 14.0 46.0 78.0 110.0 ... 6.392e+04 6.395e+04 6.398e+04
│ Data variables:
│ data (z, y, x) uint16 dask.array<chunksize=(288, 350, 576), meta=np.ndarray>
├── DataTree('s4')
│ Dimensions: (z: 477, y: 175, x: 1000)
│ Coordinates:
│ * z (z) float64 34.2 107.2 180.1 ... 3.462e+04 3.469e+04 3.476e+04
│ * y (y) float64 30.0 94.0 158.0 222.0 ... 1.104e+04 1.11e+04 1.117e+04
│ * x (x) float64 30.0 94.0 158.0 222.0 ... 6.384e+04 6.39e+04 6.397e+04
│ Data variables:
│ data (z, y, x) uint16 dask.array<chunksize=(384, 175, 864), meta=np.ndarray>
└── DataTree('s5')
Dimensions: (z: 239, y: 88, x: 500)
Coordinates:
* z (z) float64 70.68 216.6 362.5 ... 3.451e+04 3.465e+04 3.48e+04
* y (y) float64 62.0 190.0 318.0 446.0 ... 1.094e+04 1.107e+04 1.12e+04
* x (x) float64 62.0 190.0 318.0 ... 6.368e+04 6.381e+04 6.393e+04
Data variables:
data (z, y, x) uint16 dask.array<chunksize=(239, 88, 500), meta=np.ndarray>
>>> array = read_xarray(url + '/s0', storage_options=creds) # get one of the arrays as a dataarray
>>> print(array)
<xarray.DataArray 's0' (z: 7632, y: 2800, x: 16000)>
dask.array<s0, shape=(7632, 2800, 16000), dtype=uint16, chunksize=(384, 384, 384), chunktype=numpy.ndarray>
Coordinates:
* z (z) float64 0.0 4.56 9.12 13.68 ... 3.479e+04 3.479e+04 3.48e+04
* y (y) float64 0.0 4.0 8.0 12.0 ... 1.119e+04 1.119e+04 1.12e+04
* x (x) float64 0.0 4.0 8.0 12.0 ... 6.399e+04 6.399e+04 6.4e+04
Attributes:
pixelResolution: {'dimensions': [4.0, 4.0, 4.56], 'unit': 'nm'}
transform: {'axes': ['z', 'y', 'x'], 'scale': [4.56, 4.0, 4.0], 't...
To get the data as a numpy array (this will download all the chunks from s3, so be careful):
>>> array = result.compute().data
Clone the repo:
git clone https://github.com/janelia-cosem/fibsem-tools.git
Install poetry, e.g. via pipx.
Then install dependencies
cd fibsem_tools
poetry install
FAQs
Tools for processing FIBSEM datasets
We found that fibsem-tools demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 2 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Fluent Assertions is facing backlash after dropping the Apache license for a commercial model, leaving users blindsided and questioning contributor rights.
Research
Security News
Socket researchers uncover the risks of a malicious Python package targeting Discord developers.
Security News
The UK is proposing a bold ban on ransomware payments by public entities to disrupt cybercrime, protect critical services, and lead global cybersecurity efforts.