finalfusion-python
Introduction
finalfusion
is a Python package for reading, writing and using
finalfusion embeddings, but also
supports other commonly used embeddings like fastText, GloVe and
word2vec.
The Python package supports the same types of embeddings as the
finalfusion-rust crate:
- Vocabulary:
- Embedding matrix:
- Array
- Memory-mapped
- Quantized
- Norms
- Metadata
Installation
The finalfusion module is
available on PyPi for Linux,
Mac and Windows. You can use pip
to install the module:
$ pip install --upgrade finalfusion
Installing from source
Building from source depends on Cython
. If you install the package using
pip
, you don't need to explicitly install the dependency since it is
specified in pyproject.toml
.
$ git clone https://github.com/finalfusion/finalfusion-python
$ cd finalfusion-python
$ pip install .
If you want to build wheels from source, wheel
needs to be installed.
It's then possible to build wheels through:
$ python setup.py bdist_wheel
The wheels can be found in dist
.
Package Usage
Basic usage
import finalfusion
w2v_embeds = finalfusion.load_word2vec("/path/to/w2v.bin")
text_embeds = finalfusion.load_text("/path/to/embeds.txt")
text_dims_embeds = finalfusion.load_text_dims("/path/to/embeds.dims.txt")
fasttext_embeds = finalfusion.load_fasttext("/path/to/fasttext.bin")
fifu_embeds = finalfusion.load_finalfusion("/path/to/embeddings.fifu")
finalfusion.compat.write_word2vec("to_word2vec.bin", fifu_embeds)
embedding = fifu_embeds["Test"]
import numpy as np
buffer = np.zeros(fifu_embeds.storage.shape[1], dtype=np.float32)
fifu_embeds.embedding("Test", out=buffer)
sim_query = fifu_embeds.word_similarity("Test")
analogy_query = fifu_embeds.analogy("A", "B", "C")
vocab = fifu_embeds.vocab
print(vocab.words[:10])
subword_indexer = vocab.subword_indexer
print(subword_indexer.subword_indices("Test", with_ngrams=True))
res = embedding.dot(fifu_embeds.storage)
print(fifu_embeds.metadata)
Beyond Embeddings
from finalfusion import load_vocab
vocab = load_vocab("/path/to/finalfusion_file.fifu")
vocab.write("/path/to/vocab_file.fifu.voc")
from finalfusion.vocab import load_finalfusion_bucket_vocab
fifu_bucket_vocab = load_finalfusion_bucket_vocab("/path/to/vocab_file.fifu.voc")
The package supports loading and writing all finalfusion
chunks this way.
This is only supported by the Python package, reading will fail with e.g.
the finalfusion-rust
.
Scripts
finalfusion
also includes a conversion script ffp-convert
to convert
between the supported formats.
# convert from fastText format to finalfusion
$ ffp-convert -f fasttext fasttext.bin -t finalfusion embeddings.fifu
ffp-bucket-to-explicit
can be used to convert bucket embeddings to embeddings
with an explicit ngram lookup.
# convert finalfusion bucket embeddings to explicit
$ ffp-bucket-to-explicit -f finalfusion embeddings.fifu explicit.fifu
Finally, the package comes with ffp-similar
and ffp-analogy
to do
analogy and similarity queries.
# get the 5 nearest neighbours of "Tübingen"
$ echo Tübingen | ffp-similar embeddings.fifu
# get the 5 top answers for "Tübingen" is to "Stuttgart" like "Heidelberg" to...
$ echo Tübingen Stuttgart Heidelberg | ffp-analogy embeddings.fifu
Where to go from here