BDD plugin for flamapy
Description
This plugin supports Binary Decision Diagrams (BDDs) representations for feature models.
The plugin is based on flamapy and thus, it follows the same architecture:
The BDD plugin relies on the dd library to manipulate BDDs.
The complete documentation of such library is available here.
The following is an example of feature model and its BDD using complemented arcs.
Requirements and Installation
pip install flamapy flamapy-fm flamapy-bdd
We have tested the plugin on Linux, but Windows is also supported.
Functionality and usage
The executable script test_bdd_metamodel.py serves as an entry point to show the plugin in action.
The following functionality is provided:
Load a feature model in UVL and create the BDD
from flamapy.metamodels.fm_metamodel.transformations import UVLReader
from flamapy.metamodels.bdd_metamodel.transformations import FmToBDD
feature_model = UVLReader('models/uvl_models/pizzas.uvl').transform()
bdd_model = FmToBDD(feature_model).transform()
Save the BDD in a file
from flamapy.metamodels.bdd_metamodel.transformations import PNGWriter, DDDMPv3Writer
PNGWriter(path='my_bdd.png', bdd_model).transform()
DDDMPv3Writer(f'my_bdd.dddmp', bdd_model).transform()
Writers available: DDDMPv3 ('dddmp'), DDDMPv2 ('dddmp'), JSON ('json'), Pickle ('p'), PDF ('pdf'), PNG ('png'), SVG ('svg').
Load the BDD from a file
from flamapy.metamodels.bdd_metamodel.transformations import JSONReader
bdd_model = JSONReader(path='path/to/my_bdd.json').transform()
Readers available: JSON ('json'), DDDMP ('dddmp'), Pickle ('p').
NOTE: DDDMP and Pickle readers are not fully supported yet.
Analysis operations
-
Satisfiable
Return whether the model is satisfiable (valid):
from flamapy.metamodels.bdd_metamodel.operations import BDDSatisfiable
satisfiable = BDDSatisfiable().execute(bdd_model).get_result()
print(f'Satisfiable? (valid?): {satisfiable}')
-
Configurations number
Return the number of configurations:
from flamapy.metamodels.bdd_metamodel.operations import BDDConfigurationsNumber
n_configs = BDDConfigurationsNumber().execute(bdd_model).get_result()
print(f'#Configurations: {n_configs}')
-
Configurations
Enumerate the configurations of the model:
from flamapy.metamodels.bdd_metamodel.operations import BDDConfigurations
configurations = BDDConfigurations().execute(bdd_model).get_result()
for i, config in enumerate(configurations, 1):
print(f'Config {i}: {[feat for feat in config.elements if config.elements[feat]]}')
-
Sampling
Return a sample of the given size of uniform random configurations with or without replacement:
from flamapy.metamodels.bdd_metamodel.operations import BDDSampling
sampling_op = BDDSampling()
sampling_op.set_sample_size(5)
sampling_op.set_with_replacement(False)
sample = sampling_op.execute(bdd_model).get_result()
for i, config in enumerate(sample, 1):
print(f'Config {i}: {[feat for feat in config.elements if config.elements[feat]]}')
-
Product Distribution
Return the number of products (configurations) having a given number of features:
from flamapy.metamodels.bdd_metamodel.operations import BDDProductDistribution
dist = BDDProductDistribution().execute(bdd_model).get_result()
print(f'Product Distribution: {dist}')
-
Feature Inclusion Probability
Return the probability for a feature to be included in a valid configuration:
from flamapy.metamodels.bdd_metamodel.operations import BDDFeatureInclusionProbability
prob = BDDFeatureInclusionProbability().execute(bdd_model).get_result()
for feat in prob.keys():
print(f'{feat}: {prob[feat]}')
-
Core features
Return the core features (those features that are present in all the configurations):
from flamapy.metamodels.bdd_metamodel.operations import BDDCoreFeatures
core_features = BDDCoreFeatures().execute(bdd_model).get_result()
print(f'Core features: {core_features}')
-
Dead features
Return the dead features (those features that are not present in any configuration):
from flamapy.metamodels.bdd_metamodel.operations import BDDDeadFeatures
dead_features = BDDDeadFeatures().execute(bdd_model).get_result()
print(f'Dead features: {dead_features}')
Most analysis operations support also a partial configuration as an additional argument, so the operation will return the result taking into account the given partial configuration. For example:
from flamapy.core.models import Configuration
elements = {'Pizza': True, 'Big': True}
partial_config = Configuration(elements)
configs_number_op = BDDConfigurationsNumber()
configs_number_op.set_partial_configuration(partial_config)
n_configs = configs_number_op.execute(bdd_model).get_result()
print(f'#Configurations: {n_configs}')
Contributing to the BDD plugin
To contribute in the development of this plugin:
- Fork the repository into your GitHub account.
- Clone the repository:
git@github.com:<<username>>/bdd_metamodel.git
- Create a virtual environment:
python -m venv env
- Activate the virtual environment:
source env/bin/activate
- Install the plugin dependencies:
pip install flamapy flamapy-fm
- Install the BDD plugin from the source code:
pip install -e bdd_metamodel
Please try to follow the standards code quality to contribute to this plugin before creating a Pull Request:
-
To analyze your Python code and output information about errors, potential problems, convention violations and complexity, pass the prospector with:
make lint
-
To analyze the static type checker for Python and find bugs, pass the Mypy:
make mypy