FlightMatrix Bridge • API for Flight Matrix Simulation Software
FlightMatrix Bridge is a Python-based API designed for controlling and fetching information, frames, and other data from Flight Matrix. This library enables efficient and real-time communication between various processes in a system, primarily designed for interfacing flight simulators, UAV systems, or other robotics platforms. It utilizes the multiprocessing.shared_memory
module to share data such as frames, sensor data, and movement commands across multiple processes.
Download the software from Flight Matrix.
The project is structured around two primary files:
bridge.py
: Implements the core functionalities of shared memory management, handling frames, sensor data, movement commands, and logging.utilities.py
: Provides utility functions to handle timestamps and convert them into human-readable formats. It also includes a DroneController
class for controlling drones.
Table of Contents
- Introduction
- Features
- Controls
- Installation
- Usage
- Initializing the FlightMatrixBridge
- Units
- Axis System
- Logging Functions
- Flight Matrix API
- Resolution & Noise Configuration
- Timestamp Utilities
- Detailed Functionality
- Examples
- Example 1: Fetching Frames
- Example 2: Sending Movement Commands
- Example 3: Fetching Sensor Data
- Example 4: Drone Controller
- Example 5: Data Recorder
- Documentation
- Class:
FlightMatrixBridge
- Utilities
timestamp2string
timestamp2datetime
cartesian_to_gps
- Class:
DroneController
- Class:
DataRecorder
- Class:
DataStreamer
- Credits
Introduction
The FlightMatrixBridge system is designed to bridge multiple processes that need to access shared memory for real-time communication. The typical use cases include flight simulators, robotics platforms, autonomous vehicles, and any application where sharing large datasets like frames or sensor readings between processes is essential.
This package provides:
- An interface to retrieve frames and sensor data from shared memory.
- The ability to send movement commands to be processed by another service.
- Real-time noise application to sensor data.
- Utilities to handle timestamps.
Features
Controllable Features
Simulation Environments
Graphics Presets
The FlightMatrix software offers a range of features to facilitate real-time communication and data sharing between processes. Key features include:
- Dual Camera Support: Flight Matrix is equipped with two cameras—left and right—that operate simultaneously. Each camera is capable of outputting high-quality RGB images, depth passes (z-depth), and segmentation maps, providing a comprehensive view of your simulated environment.
- Independent Camera Control: Each camera can be controlled independently, allowing you to position them relative to the drone with precision. Adjust the x, y, z coordinates, as well as yaw, pitch, and roll to achieve the desired perspective.
- Variable Speed Control: Control the speed of each axis and the rotation speed of the cameras, ensuring you can fine-tune the responsiveness to suit your simulation needs.
- Customizable Output: Turn on and off various output maps as required. Control the resolution of the output frames and adjust the Field of View (FOV) to enhance your visual experience.
- Graphics Presets: Choose from various graphics presets tailored for different simulation scenarios. Optimize the software’s performance based on your hardware capabilities and desired visual fidelity.
- Diverse Simulation Environments: Flight Matrix features a range of realistic maps, including architectural, natural, and ultra-realistic environments for authentic simulations. Navigate through intricate landscapes and urban settings as if you were flying in the real world.
- Human-like AI Characters: Enhance your simulations with beautifully animated AI characters that simulate real crowds and human interactions. Observe how they behave and interact within the environment, adding depth to your scenarios.
The FlightMatrixBridge API provides a simple and efficient way to interact with the Flight Matrix simulation software, enabling you to access frames, sensor data, and movement commands in real-time. The API is designed to be easy to use and flexible, allowing you to integrate it into your projects seamlessly.
- Frame Management: Retrieve left/right frames, z-depth maps, and segmentation frames in real-time.
- Sensor Data Access: Retrieve real-time sensor data such as location, orientation, velocity, acceleration, magnetometer readings, and more.
- Movement Command Handling: Send movement commands (position and orientation) for external systems to process.
- Noise Simulation: Add configurable levels of noise to sensor data for testing robustness.
- Flexible Resolution Handling: Easily set and adjust resolution for frames.
- Timestamp Management: Convert timestamps into human-readable formats and handle system-wide timing data.
Controls
Action | Keyboard/Mouse |
---|
Move Forward | W |
Move Backward | S |
Move Left | A |
Move Right | D |
Ascend | Space Bar |
Descend | Left Shift |
Rotate (Yaw, Pitch, Roll) | Arrow Keys |
Move Left/Right | Q / E |
Pause | Escape / Pause / P |
Exit | Escape / Pause / P |
Spawn Human AI Character | H |
Return to Starting Location | R |
Installation
Download the software from Flight Matrix.
To install the FlightMatrixBridge (API), simply use pip:
pip install flightmatrixbridge
Make sure your system has Python 3.8+ and supports the multiprocessing.shared_memory
module.
Usage
Initializing the FlightMatrixBridge
To initialize and start using the FlightMatrixBridge, create an instance of the FlightMatrixBridge
class and specify the resolution of the frames you want to handle:
from flightmatrix.bridge import FlightMatrixBridge
bridge = FlightMatrixBridge(resolution=(1226, 370), noise_level=0.01, apply_noise=False)
Units
The system uses the following units for sensor data:
- Length: centimeters (cm)
- Angular values: degrees (°)
- Angular velocity/ gyroscope readings: degrees per second (°/s)
- Acceleration/ accelerometer readings: centimeters per second squared (cm/s²)
- Magnetometer readings: unit vector
- LiDAR data: centimeters (cm)
- Collision detection: centimeters (cm)
- Timestamp: milliseconds (ms)
Axis System
The axis system differs slightly between the software interface and the API. Below is a detailed explanation for both.
Inside the Software
When adjusting camera positions or configuring movement multipliers within the software, the following axis system is used:
Direction | Axis |
---|
Forward | Y |
Backward | -Y |
Left | -X |
Right | X |
Up | Z |
Down | -Z |
Rotation values are in degrees and are labeled roll, pitch, and yaw:
Rotation | Axis |
---|
Roll | X |
Pitch | Y |
Yaw | Z |
Axis Orientation:
Z (Up)
|
|
|
O------ X (Right)
/
/
-Y (Backward)
In the API
The API uses a different axis system for movement commands and sensor data:
Direction | Axis |
---|
Forward | X |
Backward | -X |
Left | -Y |
Right | X |
Up | Z |
Down | -Z |
Rotation values are in degrees and are labeled roll, pitch, and yaw:
Rotation | Axis |
---|
Roll | X |
Pitch | Y |
Yaw | Z |
Axis Orientation:
Z (Up)
|
|
|
O------ Y (Right)
/
/
-X (Backward)
Logging Functions
You can configure logging based on your needs. The logging system provides flexibility to output logs either to the console or a file, and supports different log levels (DEBUG
, INFO
, WARNING
, ERROR
, SUCCESS
).
bridge.set_log_level('DEBUG')
bridge.set_write_to_file(True)
Flight Matrix API
The core functionalities include retrieving frames, fetching sensor data, and sending movement commands.
Getting Frame Data
You can retrieve frames from both the left and right cameras. You also have access to depth and segmentation data.
right_frame = bridge.get_right_frame()
left_frame = bridge.get_left_frame()
right_zdepth = bridge.get_right_zdepth()
left_seg = bridge.get_left_seg()
Fetching Sensor Data
The bridge allows real-time access to sensor data from the shared memory block. This data includes location, orientation, velocity, acceleration, and more.
sensor_data = bridge.get_sensor_data()
print(sensor_data)
Sending Movement Commands
To send movement commands (position and orientation) to a system, use the send_movement_command
method.
bridge.send_movement_command(1.0, 2.0, 3.0, 0.1, 0.2, 0.3)
Resolution & Noise Configuration
You can adjust the frame resolution dynamically and control noise levels applied to sensor data.
bridge.set_resolution(1280, 720)
bridge.set_noise_level(0.05)
bridge.set_apply_noise(True)
Timestamp Utilities
The utilities.py
file provides functions to convert timestamps from milliseconds into human-readable formats and to datetime
objects.
from flightmatrix.utilities import timestamp2string, timestamp2datetime
timestamp_string = timestamp2string(1633029600000)
print(timestamp_string)
timestamp_dt = timestamp2datetime(1633029600000)
print(timestamp_dt)
Detailed Functionality
Initialization
Upon initialization, the FlightMatrixBridge
class sets up shared memory blocks for frames, sensor data, and movement commands. It also configures the resolution and frame shapes.
Shared Memory Management
The shared memory blocks are initialized using multiprocessing.shared_memory.SharedMemory
, providing fast, low-latency access to the data. Each memory block corresponds to specific data types like frames, sensor readings, or movement commands.
The memory block names and their associated data are defined in the memory_names
dictionary within the FlightMatrixBridge
class:
right_frame
: Stores the right camera frame.left_frame
: Stores the left camera frame.right_zdepth
: Z-depth map for the right camera.left_zdepth
: Z-depth map for the left camera.right_seg
: Segmentation data for the right camera.left_seg
: Segmentation data for the left camera.sensor_data
: Sensor data shared memory.movement_command
: Memory block for sending movement commands.
Frame Handling
Frames can be retrieved from the shared memory using the _get_frame
method. The frames are stored as NumPy arrays and can be either 1-channel (grayscale) or 3-channel (RGB).
Sensor Data Handling
The get_sensor_data
method retrieves sensor readings from the shared memory. The sensor data includes:
- Location
(x, y, z)
in centimeters - Orientation
(roll, pitch, yaw)
in degrees - gyroscope
(x, y, z)
in degrees per second - accelerometer
(x, y, z)
in cm/s^2 - Magnetometer readings
(x, y, z)
in unit vector - LiDAR data
(LiDARForward, LiDARBackward, LiDARLeft, LiDARRight, LiDARBottom) or (Y, -Y, -X, X, -Z)
in centimeters - Collision detection status
(True/False, LocationX, LocationY, LocationZ)
in centimeters - Timestamp in milliseconds
Movement Command Management
Movement commands are written to shared memory using send_movement_command
. These commands include the position and orientation of the system and are stored as six floating-point values.
Logging
The logging system is highly configurable and provides essential feedback about the system's operations. You can adjust the verbosity of the logs and decide whether to write them to a file.
Noise Application
To simulate real-world noise in sensor data, noise can be added using Gaussian distribution. This feature is optional and can be enabled/disabled dynamically.
Examples
Example 1: Fetching Frames
import cv2
from flightmatrix.bridge import FlightMatrixBridge
from flightmatrix.utilities import timestamp2string
import ultraprint.common as p
bridge = FlightMatrixBridge()
while True:
left_frame_data = bridge.get_left_frame()
right_frame_data = bridge.get_right_frame()
left_zdepth_data = bridge.get_left_zdepth()
right_zdepth_data = bridge.get_right_zdepth()
left_frame = left_frame_data['frame']
right_frame = right_frame_data['frame']
left_zdepth = left_zdepth_data['frame']
right_zdepth = right_zdepth_data['frame']
left_timestamp = left_frame_data['timestamp']
right_timestamp = right_frame_data['timestamp']
left_timestamp = timestamp2string(left_timestamp)
right_timestamp = timestamp2string(right_timestamp)
cv2.imshow("Left Frame", left_frame)
cv2.imshow("Right Frame", right_frame)
cv2.imshow("Left Z-Depth", left_zdepth)
cv2.imshow("Right Z-Depth", right_zdepth)
p.purple(f"Left Frame Timestamp: {left_timestamp}")
p.purple(f"Right Frame Timestamp: {right_timestamp}")
p.lgray(f"Left Z-Depth Timestamp: {left_timestamp}")
p.lgray(f"Right Z-Depth Timestamp: {right_timestamp}")
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cv2.destroyAllWindows()
Example 2: Sending Movement Commands
from flightmatrix.bridge import FlightMatrixBridge
bridge = FlightMatrixBridge()
bridge.send_movement_command(0.5, 1.0, 0.8, 0.0, 0.1, 0.2)
In order to reset/stop the movement, you can send a command with all zeros:
bridge.send_movement_command(0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
Example 3: Fetching Sensor Data
from flightmatrix.bridge import FlightMatrixBridge
bridge = FlightMatrixBridge(resolution=(1226, 370), noise_level=0.01, apply_noise=False)
sensor_data = bridge.get_sensor_data()
if sensor_data.get('error'):
print("Error fetching sensor data:", sensor_data['error'])
else:
location = sensor_data['location']
orientation = sensor_data['orientation']
gyroscope = sensor_data['gyroscope']
accelerometer = sensor_data['accelerometer']
magnetometer = sensor_data['magnetometer']
lidar = sensor_data['lidar']
collision = sensor_data['collision']
timestamp = sensor_data['timestamp']
print("Sensor Data:")
print("-----------------------")
print(f"Timestamp: {timestamp} ms")
print(f"Location (cm): X={location[0]:.2f}, Y={location[1]:.2f}, Z={location[2]:.2f}")
print(f"Orientation (degrees): Roll={orientation[0]:.2f}, Pitch={orientation[1]:.2f}, Yaw={orientation[2]:.2f}")
print(f"Gyroscope (deg/s): X={gyroscope[0]:.2f}, Y={gyroscope[1]:.2f}, Z={gyroscope[2]:.2f}")
print(f"Accelerometer (cm/s²): X={accelerometer[0]:.2f}, Y={accelerometer[1]:.2f}, Z={accelerometer[2]:.2f}")
print(f"Magnetometer (unit vector): X={magnetometer[0]:.2f}, Y={magnetometer[1]:.2f}, Z={magnetometer[2]:.2f}")
print(f"LiDAR Data (cm): Forward={lidar[0]:.2f}, Backward={lidar[1]:.2f}, Left={lidar[2]:.2f}, Right={lidar[3]:.2f}, Bottom={lidar[4]:.2f}")
print(f"Collision Detection: Status={collision[0]}, Location (cm): X={collision[1]:.2f}, Y={collision[2]:.2f}, Z={collision[3]:.2f}")
Example 4: Drone Controller
from flightmatrix.bridge import FlightMatrixBridge
from flightmatrix.utilities import DroneController
bridge = FlightMatrixBridge()
drone = DroneController(bridge)
drone.move_forward(1.0)
drone.ascend(0.5)
drone.rotate_yaw(0.3)
drone.stop_rotation()
drone.stop()
drone.hover_and_rotate(0.5, 5)
Example 5: Data Recorder
from flightmatrix.bridge import FlightMatrixBridge
from flightmatrix.utilities import DataRecorder
import time
if __name__ == "__main__":
bridge = FlightMatrixBridge()
recorder = DataRecorder(bridge, base_dir="Sample_Recordings",
record_left_frame=True,
record_right_frame=True,
record_left_zdepth=True,
record_right_zdepth=True,
record_left_seg=True,
record_right_seg=True,
record_sensor_data=True,
record_sensor_data_interval=1)
recorder.start_recording()
time.sleep(120)
recorder.stop_recording()
Documentation
Class: FlightMatrixBridge
This class interfaces with the Flight Matrix system using shared memory for inter-process communication. It manages frames, timestamps, and movement commands, enabling seamless data sharing between processes.
Attributes:
-
width (int)
: The width of the frame, initialized by the resolution provided.
-
height (int)
: The height of the frame, initialized by the resolution provided.
-
frame_shape (tuple)
: Tuple representing the shape of the frame as (height, width)
.
-
frame_shape_3ch (tuple)
: Tuple representing the shape of the frame with 3 channels as (height, width, 3)
.
-
noise_level (float)
: Specifies the level of noise to be applied. Defaults to 0.01
.
-
apply_noise (bool)
: Boolean flag that determines whether noise should be applied. Defaults to False
.
-
memory_names (dict)
: Dictionary mapping keys to shared memory block names. Used for storing frame, depth, segmentation, and movement command data.
-
log (Logger)
: A logger instance used for logging events and debugging messages.
-
shm (dict)
: Dictionary storing the shared memory objects for frame data.
-
shm_timestamps (dict)
: Dictionary storing the shared memory objects for timestamps.
-
num_floats (int)
: Number of float values stored in shared memory for movement commands. Defaults to 6
. Do not edit this value.
Methods:
__init__(self, resolution=(1226, 370), noise_level=0.01, apply_noise=False)
Description:
Initializes the FlightMatrixBridge
class by setting up shared memory, logging, and configuring noise settings.
Args:
resolution (tuple, optional)
: A tuple specifying the frame's width and height. Defaults to (1226, 370)
.noise_level (float, optional)
: Specifies the level of noise to be applied to sensor data. Defaults to 0.01
.apply_noise (bool, optional)
: Boolean flag that determines whether noise should be applied to sensor data. Defaults to False
.
Example:
bridge = FlightMatrixBridge(resolution=(800, 600), noise_level=0.05, apply_noise=True)
set_log_level(self, log_level='INFO')
Description:
Sets the logging level for the logger instance to control the verbosity of log output.
Args:
log_level (str)
: Desired log level ('DEBUG'
, 'INFO'
, 'WARNING'
, 'ERROR'
). Default is 'INFO'
.
Returns:
None.
Example:
bridge.set_log_level('DEBUG')
set_write_to_file(self, write_to_file)
Description:
Sets whether the logging should be written to a file or not.
Args:
write_to_file (bool)
: If True
, log messages will be written to a file; otherwise, they won't.
Returns:
None.
Example:
bridge.set_write_to_file(True)
_initialize_shared_memory(self)
Description:
Initializes shared memory blocks for frames and timestamps based on the keys stored in memory_names
. If the shared memory block for a specific key is not available, a warning will be logged.
Raises:
FileNotFoundError
: If the shared memory block for a key does not exist.
Returns:
None.
Example:
bridge._initialize_shared_memory()
_initialize_movement_command_memory(self)
Description:
Sets up shared memory for movement commands (x, y, z, roll, pitch, yaw
) and an availability flag. If the shared memory block exists, it will attach to it; otherwise, it will create a new block.
Raises:
FileExistsError
: If the shared memory block already exists when trying to create it.
Returns:
None.
Example:
bridge._initialize_movement_command_memory()
_get_frame(self, key, channels=3)
Description:
Retrieves a frame from shared memory. Handles both 3-channel and single-channel frame retrieval.
Args:
key (str)
: Key identifying the shared memory segment.channels (int, optional)
: Number of channels in the frame, default is 3
.
Returns:
dict
: A dictionary with:
'frame' (np.ndarray or None)
: The retrieved frame or None
if an error occurred.'timestamp' (any or None)
: The timestamp associated with the frame or None
if an error occurred.'error' (str or None)
: Error message, if any.
Raises:
Warning
: If shared memory is not available or if there is a resolution mismatch.
Example:
frame_data = bridge._get_frame('right_frame', channels=3)
_get_timestamp(self, key)
Description:
Retrieves the timestamp associated with the frame stored in shared memory.
Args:
key (str)
: Key identifying the shared memory segment for the timestamp.
Returns:
int or None
: The timestamp as an integer, or None
if not available.
Example:
timestamp = bridge._get_timestamp('right_frame')
add_noise(self, data)
Description:
Adds Gaussian noise to the given data based on the configured noise level.
Args:
data (np.ndarray)
: The data (typically a frame) to which noise will be added.
Returns:
np.ndarray
: The noisy data.
Example:
noisy_frame = bridge.add_noise(frame_data)
get_sensor_data(self)
Description:
Retrieves sensor data from shared memory and returns it as a dictionary.
If the sensor data is not available in shared memory, a warning is logged,
and a dictionary with all sensor fields set to None and an error message is returned.
The sensor data includes:
- location: 3 floats representing the location coordinates.
- orientation: 3 floats representing the orientation.
- gyroscope: 3 floats representing the gyroscope readings.
- accelerometer: 3 floats representing the accelerometer readings.
- magnetometer: 3 floats representing the magnetometer readings.
- lidar: 5 floats representing the lidar readings.
- collision: 4 floats representing the collision data.
- timestamp: The timestamp of the sensor data.
If noise application is enabled, noise is added to the gyroscope, accelerometer,
magnetometer, and lidar data.
Returns:
dict
: A dictionary containing the sensor data or an error message if the data is not available.
Example:
sensor_data = bridge.get_sensor_data()
send_movement_command(self, x, y, z, roll, pitch, yaw)
Description:
Sends movement command values (x, y, z, roll, pitch, yaw
) to the shared memory block.
Args:
x (float)
: Movement in the X-axis.y (float)
: Movement in the Y-axis.z (float)
: Movement in the Z-axis.roll (float)
: Roll rotation.pitch (float)
: Pitch rotation.yaw (float)
: Yaw rotation.
Returns:
None.
Example:
bridge.send_movement_command(1.0, 0.5, -1.0, 0.2, 0.1, -0.3)
_write_movement_command(self, commands)
Description:
Writes the movement commands to shared memory.
Args:
commands (list of float)
: List of movement command values ([x, y, z, roll, pitch, yaw]
).
Returns:
None.
Example:
bridge._write_movement_command([1.0, 0.5, -1.0, 0.2, 0.1, -0.3])
set_resolution(self, width, height)
Description:
Sets the resolution of the frames by updating the width
and height
attributes and recalculating the frame shapes.
Args:
width (int)
: Width of the frames.height (int)
: Height of the frames.
Returns:
None.
Example:
bridge.set_resolution(800, 600)
set_noise_level(self, noise_level)
Description:
Sets the noise level for the frames.
Args:
noise_level (float)
: The level of noise to apply.
Returns:
None.
Example:
bridge.set_noise_level(0.05)
set_apply_noise(self, apply_noise)
Description:
Sets whether noise should be applied to frames.
Args:
apply_noise (bool)
: Whether to apply noise (True
or False
).
Returns:
None.
Example:
bridge.set_apply_noise(True)
get_right_frame(self)
Description:
Retrieves the right frame from shared memory.
Returns:
dict
: A dictionary with:
'frame' (np.ndarray or None)
: The retrieved right frame or None
if an error occurred.'timestamp' (int or None)
: The timestamp associated with the right frame or None
if an error occurred.'error' (str or None)
: Error message, if any.
Example:
right_frame_data = bridge.get_right_frame()
get_left_frame(self)
Description:
Retrieves the left frame from shared memory.
Returns:
dict
: A dictionary with:
'frame' (np.ndarray or None)
: The retrieved left frame or None
if an error occurred.'timestamp' (int or None)
: The timestamp associated with the left frame or None
if an error occurred.'error' (str or None)
: Error message, if any.
Example:
left_frame_data = bridge.get_left_frame()
get_right_zdepth(self)
Description:
Retrieves the right depth frame from shared memory.
Returns:
dict
: A dictionary with:
'frame' (np.ndarray or None)
: The retrieved right depth frame or None
if an error occurred.'timestamp' (int or None)
: The timestamp associated with the right depth frame or None
if an error occurred.'error' (str or None)
: Error message, if any.
Example:
right_zdepth_data = bridge.get_right_zdepth()
get_left_zdepth(self)
Description:
Retrieves the left depth frame from shared memory.
Returns:
dict
: A dictionary with:
'frame' (np.ndarray or None)
: The retrieved left depth frame or None
if an error occurred.'timestamp' (int or None)
: The timestamp associated with the left depth frame or None
if an error occurred.'error' (str or None)
: Error message, if any.
Example:
left_zdepth_data = bridge.get_left_zdepth()
get_right_seg(self)
Description:
Retrieves the right segmentation frame from shared memory.
Returns:
dict
: A dictionary with:
'frame' (np.ndarray or None)
: The retrieved right segmentation frame or None
if an error occurred.'timestamp' (int or None)
: The timestamp associated with the right segmentation frame or None
if an error occurred.'error' (str or None)
: Error message, if any.
Example:
right_segmentation_data = bridge.get_right_seg()
get_left_seg(self)
Description:
Retrieves the left segmentation frame from shared memory.
Returns:
dict
: A dictionary with:
'frame' (np.ndarray or None)
: The retrieved left segmentation frame or None
if an error occurred.'timestamp' (int or None)
: The timestamp associated with the left segmentation frame or None
if an error occurred.'error' (str or None)
: Error message, if any.
Example:
left_segmentation_data = bridge.get_left_seg()
2. Utilities
1. timestamp2string
Description:
Converts a timestamp in milliseconds to a human-readable string format.
Args:
timestamp (int)
: The timestamp in milliseconds.
Returns:
str
: Formatted timestamp as a string in the format 'YYYY-MM-DD HH:MM:SS:fff'.
Example:
formatted_time = timestamp2string(1609459200000)
2. timestamp2datetime
Description:
Converts a timestamp in milliseconds to a datetime
object in UTC.
Args:
timestamp (int)
: The timestamp in milliseconds.
Returns:
datetime
: The corresponding datetime
object in UTC.
Example:
datetime_obj = timestamp2datetime(1609459200000)
3. cartesian_to_gps
Description:
Converts Cartesian coordinates to GPS coordinates (latitude, longitude, altitude).
Args:
x (float)
: X coordinate in centimeters.y (float)
: Y coordinate in centimeters.z (float)
: Z coordinate in centimeters.origin_lat (float, optional)
: Latitude of the origin point in degrees. Defaults to 22.583047.origin_lon (float, optional)
: Longitude of the origin point in degrees. Defaults to 88.45859783333334.origin_alt (float, optional)
: Altitude of the origin point in meters. Defaults to 0.add_noise (bool, optional)
: Whether to add noise to the GPS coordinates. Defaults to False.lat_long_noise_amt (float, optional)
: Amount of noise to add to latitude and longitude. Defaults to 0.0001.alt_noise_amt (float, optional)
: Amount of noise to add to altitude. Defaults to 0.1.earth_radius (float, optional)
: Radius of the Earth in meters. Defaults to 6378137 (meters).
Returns:
tuple
: A tuple containing the latitude, longitude, and altitude in meters.
Example:
latitude, longitude, altitude = cartesian_to_gps(1000, 2000, 300)
Class: DroneController
This class provides an interface to control the drone's movements by sending commands to the flight matrix system. It allows the drone to move along the x, y, and z axes and rotate around the roll, pitch, and yaw axes.
Attributes:
bridge (FlightMatrixBridge)
: The bridge object used to communicate with the drone.current_x (float)
: Current x-coordinate position, initialized to 0.0
.current_y (float)
: Current y-coordinate position, initialized to 0.0
.current_z (float)
: Current z-coordinate position, initialized to 0.0
.current_roll (float)
: Current roll angle, initialized to 0.0
.current_pitch (float)
: Current pitch angle, initialized to 0.0
.current_yaw (float)
: Current yaw angle, initialized to 0.0
.
Methods:
__init__(self, bridge_object: FlightMatrixBridge)
Description:
Initializes the DroneController
class by linking it to a FlightMatrixBridge
object and setting the initial drone movement parameters to zero.
Args:
bridge_object (FlightMatrixBridge)
: An instance of FlightMatrixBridge
for communication with the flight matrix system.
Example:
bridge = FlightMatrixBridge()
drone_controller = DroneController(bridge)
_send_command(self)
Description:
Sends the current positional and rotational state (x, y, z, roll, pitch, yaw) as movement commands to the drone.
Returns:
None
Example:
drone_controller._send_command()
move_x(self, value)
Description:
Moves the drone to a specified x-coordinate.
Args:
value (float)
: The x-coordinate to move to.
Returns:
None
Example:
drone_controller.move_x(10.5)
move_y(self, value)
Description:
Moves the drone to a specified y-coordinate (left or right).
Args:
value (float)
: The y-coordinate to move to.
Returns:
None
Example:
drone_controller.move_y(-5.2)
move_z(self, value)
Description:
Moves the drone to a specified z-coordinate (up or down).
Args:
value (float)
: The z-coordinate to move to.
Returns:
None
Example:
drone_controller.move_z(15.0)
rotate_roll(self, value)
Description:
Rotates the drone to a specified roll angle.
Args:
value (float)
: The roll angle to rotate to.
Returns:
None
Example:
drone_controller.rotate_roll(30.0)
rotate_pitch(self, value)
Description:
Rotates the drone to a specified pitch angle.
Args:
value (float)
: The pitch angle to rotate to.
Returns:
None
Example:
drone_controller.rotate_pitch(-15.0)
rotate_yaw(self, value)
Description:
Rotates the drone to a specified yaw angle.
Args:
value (float)
: The yaw angle to rotate to, in degrees.
Returns:
None
Example:
drone_controller.rotate_yaw(90.0)
ascend(self, value)
Description:
Ascends the drone by a specified value, increasing the current altitude.
Args:
value (float)
: The amount to increase the altitude.
Returns:
None
Example:
drone_controller.ascend(5.0)
descend(self, value)
Description:
Descends the drone by a specified value, decreasing the current altitude.
Args:
value (float)
: The amount to decrease the altitude.
Returns:
None
Example:
drone_controller.descend(3.0)
move_forward(self, value)
Description:
Moves the drone forward by a specified value (positive y-axis).
Args:
value (float)
: The amount to move forward.
Returns:
None
Example:
drone_controller.move_forward(10.0)
move_backward(self, value)
Description:
Moves the drone backward by a specified value (negative y-axis).
Args:
value (float)
: The amount to move backward.
Returns:
None
Example:
drone_controller.move_backward(8.0)
stop_movement(self)
Description:
Stops all drone movements on the x, y, and z axes.
Returns:
None
Example:
drone_controller.stop_movement()
Class: DataRecorder
The DataRecorder
class is designed to record various types of data from a drone or robotic system using the FlightMatrix framework. It can capture visual frames, z-depth images, segmentation frames, and sensor data, all of which are stored in a structured manner for later analysis.
Attributes:
bridge (FlightMatrixBridge)
: The bridge object used to interface with the drone or robot's systems.base_dir (str)
: The base directory where all recorded data will be stored.record_left_frame (bool)
: Flag indicating whether to record the left visual frame (default: False
).record_right_frame (bool)
: Flag indicating whether to record the right visual frame (default: False
).record_left_zdepth (bool)
: Flag indicating whether to record the left z-depth frame (default: False
).record_right_zdepth (bool)
: Flag indicating whether to record the right z-depth frame (default: False
).record_left_seg (bool)
: Flag indicating whether to record the left segmentation frame (default: False
).record_right_seg (bool)
: Flag indicating whether to record the right segmentation frame (default: False
).record_sensor_data (bool)
: Flag indicating whether to record sensor data (default: False
).sensor_data_interval (float)
: The interval at which sensor data is recorded (default: 0.1
seconds).threads (list)
: List to hold the thread objects for recording data.stop_event (Event)
: Event used to signal the threads to stop.
Methods:
__init__(self, bridge: FlightMatrixBridge, base_dir: str, record_left_frame: bool = False, record_right_frame: bool = False, record_left_zdepth: bool = False, record_right_zdepth: bool = False, record_left_seg: bool = False, record_right_seg: bool = False, record_sensor_data: bool = False, record_sensor_data_interval: float = 0.1)
Description:
Initializes the DataRecorder
class with specified options for recording. It sets up directories for storing the recorded data based on user selections.
Args:
bridge (FlightMatrixBridge)
: An instance of FlightMatrixBridge
used to interact with the drone/robot.base_dir (str)
: The directory to store recorded files.record_left_frame (bool)
: If True
, records the left visual frame.record_right_frame (bool)
: If True
, records the right visual frame.record_left_zdepth (bool)
: If True
, records the left z-depth frame.record_right_zdepth (bool)
: If True
, records the right z-depth frame.record_left_seg (bool)
: If True
, records the left segmentation frame.record_right_seg (bool)
: If True
, records the right segmentation frame.record_sensor_data (bool)
: If True
, records sensor data.record_sensor_data_interval (float)
: Time interval for recording sensor data in seconds.
record_frames(self)
Description:
Continuously captures and saves visual frames, z-depth frames, and segmentation frames until the recording is stopped. Each frame is saved with a timestamped filename.
Description:
Records sensor data at specified intervals, saving the readings to a CSV file. It checks for errors in the sensor data and handles them appropriately.
start_recording(self)
Description:
Starts the recording process by launching separate threads for recording frames and sensor data, based on the user’s selections.
stop_recording(self)
Description:
Stops the recording process by signaling the threads to finish and waits for them to join back.
Example Usage:
if __name__ == "__main__":
bridge = FlightMatrixBridge()
recorder = DataRecorder(bridge, base_dir="Sample_Recordings",
record_left_frame=True,
record_right_frame=True,
record_left_zdepth=True,
record_right_zdepth=True,
record_left_seg=True,
record_right_seg=True,
record_sensor_data=True,
record_sensor_data_interval=1)
recorder.start_recording()
time.sleep(10)
recorder.stop_recording()
is_recording_on(self)
Description:
Checks if the recording process is currently active.
Returns:
bool
: True
if recording is active, False
otherwise.
Data Streaming with DataStreamer
The DataStreamer
class provides a convenient way to stream data from the Flight Matrix system using callbacks. It allows you to subscribe to specific data streams (e.g., left frame, sensor data) and specify callback functions that are called whenever new data is available. Each data stream runs in its own thread, enabling parallel data fetching without one stream waiting for the other. You can also specify the interval at which data is fetched or set it to zero for the fastest possible streaming.
Features
- Subscribe to Data Streams: Subscribe to specific data types you are interested in.
- Parallel Data Fetching: Each data stream runs in its own thread for efficient parallel processing.
- Custom Callbacks: Provide your own callback functions to process the data as it arrives.
- Adjustable Fetch Interval: Control the rate at which data is fetched by specifying the interval.
Usage
Import and Initialize
from flightmatrix.bridge import FlightMatrixBridge
from flightmatrix.utilities import DataStreamer
bridge = FlightMatrixBridge()
streamer = DataStreamer(bridge)
Subscribe to Data Streams
import cv2
def left_frame_callback(frame_data):
frame = frame_data['frame']
timestamp = frame_data['timestamp']
cv2.imshow("Left Frame", frame)
print("Left Frame Timestamp:", timestamp)
streamer.subscribe("left_frame", left_frame_callback)
def sensor_data_callback(sensor_data):
print("Sensor Data:", sensor_data)
streamer.subscribe("sensor_data", sensor_data_callback)
Available Data Streams
- left_frame: Left visual frame data.
- right_frame: Right visual frame data.
- left_zdepth: Left z-depth frame data.
- right_zdepth: Right z-depth frame data.
- left_seg: Left segmentation frame data.
- right_seg: Right segmentation frame data.
- sensor_data: Sensor data from the drone or robot.
Use the subscribe
method to subscribe to the desired data streams and provide a callback function to process the data as it arrives. The callback function will be called with the data as an argument whenever new data is available. for example, the left_frame_callback
function will be called with the left frame data whenever a new frame is available.
Subscribing to Data Streams
import cv2
from flightmatrix.bridge import FlightMatrixBridge
from flightmatrix.utilities import DataStreamer
def left_frame_callback(left_frame_data):
left_frame = left_frame_data['frame']
left_timestamp = left_frame_data['timestamp']
cv2.imshow("Left Frame", left_frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
cv2.destroyAllWindows()
print("Left Frame Timestamp:", left_timestamp)
def right_frame_callback(right_frame_data):
right_frame = right_frame_data['frame']
right_timestamp = right_frame_data['timestamp']
cv2.imshow("Right Frame", right_frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
cv2.destroyAllWindows()
print("Right Frame Timestamp:", right_timestamp)
def left_zdepth_callback(left_zdepth_data):
left_zdepth = left_zdepth_data['frame']
left_timestamp = left_zdepth_data['timestamp']
cv2.imshow("Left Z-Depth", left_zdepth)
if cv2.waitKey(1) & 0xFF == ord('q'):
cv2.destroyAllWindows()
print("Left Z-Depth Timestamp:", left_timestamp)
def right_zdepth_callback(right_zdepth_data):
right_zdepth = right_zdepth_data['frame']
right_timestamp = right_zdepth_data['timestamp']
cv2.imshow("Right Z-Depth", right_zdepth)
if cv2.waitKey(1) & 0xFF == ord('q'):
cv2.destroyAllWindows()
print("Right Z-Depth Timestamp:", right_timestamp)
def left_seg_callback(left_seg_data):
left_seg = left_seg_data['frame']
left_timestamp = left_seg_data['timestamp']
cv2.imshow("Left Segmentation", left_seg)
if cv2.waitKey(1) & 0xFF == ord('q'):
cv2.destroyAllWindows()
print("Left Segmentation Timestamp:", left_timestamp)
def right_seg_callback(right_seg_data):
right_seg = right_seg_data['frame']
right_timestamp = right_seg_data['timestamp']
cv2.imshow("Right Segmentation", right_seg)
if cv2.waitKey(1) & 0xFF == ord('q'):
cv2.destroyAllWindows()
print("Right Segmentation Timestamp:", right_timestamp)
def sensor_data_callback(sensor_data):
print("Sensor Data:", sensor_data)
bridge = FlightMatrixBridge()
streamer = DataStreamer(bridge)
streamer.subscribe("left_frame", left_frame_callback, interval=0)
streamer.subscribe("right_frame", right_frame_callback, interval=0.1)
streamer.subscribe("left_zdepth", left_zdepth_callback, interval=0.1)
streamer.subscribe("right_zdepth", right_zdepth_callback, interval=0.1)
streamer.subscribe("left_seg", left_seg_callback, interval=0.1)
streamer.subscribe("right_seg", right_seg_callback, interval=0.1)
streamer.subscribe("sensor_data", sensor_data_callback, interval=0.1)
Credits
This project was developed and maintained by Ranit Bhowmick, a Robotics and Automation engineer with a passion for building innovative solutions in AI, game development, and full-stack projects. Specializing in advanced Python programming, machine learning, and robotics, I’m always open to collaboration and eager to explore new challenges.
I'd like to express my gratitude to the unreal engine community for their support and feedback. I'm always open to suggestions and contributions to improve this project further.