Flytekit Memory Machine Cloud Plugin
Flyte Agent plugin to allow executing Flyte tasks using MemVerge Memory Machine Cloud.
To install the plugin, run the following command:
pip install flytekitplugins-mmcloud
To get started with MMCloud, refer to the MMCloud User Guide.
Getting Started
This plugin allows executing PythonFunctionTask
using MMCloud without changing any function code.
Resource (cpu and mem) requests and limits, container images, and environment variable specifications are supported.
ImageSpec may be used to define images to run tasks.
Credentials
The following secrets are required to be defined for the agent server:
mmc_address
: MMCloud OpCenter addressmmc_username
: MMCloud OpCenter usernamemmc_password
: MMCloud OpCenter password
Defaults
Compute resources:
- If only requests are specified, there are no limits.
- If only limits are specified, the requests are equal to the limits.
- If neither resource requests nor limits are specified, the default requests used for job submission are
cpu="1"
and mem="1Gi"
, and there are no limits.
Example
example.py
workflow example:
import pandas as pd
from flytekit import ImageSpec, Resources, task, workflow
from sklearn.datasets import load_wine
from sklearn.linear_model import LogisticRegression
from flytekitplugins.mmcloud import MMCloudConfig
image_spec = ImageSpec(packages=["scikit-learn"], registry="docker.io/memverge")
@task
def get_data() -> pd.DataFrame:
"""Get the wine dataset."""
return load_wine(as_frame=True).frame
@task(task_config=MMCloudConfig(), container_image=image_spec)
def process_data(data: pd.DataFrame) -> pd.DataFrame:
"""Simplify the task from a 3-class to a binary classification problem."""
return data.assign(target=lambda x: x["target"].where(x["target"] == 0, 1))
@task(
task_config=MMCloudConfig(submit_extra="--migratePolicy [enable=true]"),
requests=Resources(cpu="1", mem="1Gi"),
limits=Resources(cpu="2", mem="4Gi"),
container_image=image_spec,
environment={"KEY": "value"},
)
def train_model(data: pd.DataFrame, hyperparameters: dict) -> LogisticRegression:
"""Train a model on the wine dataset."""
features = data.drop("target", axis="columns")
target = data["target"]
return LogisticRegression(max_iter=3000, **hyperparameters).fit(features, target)
@workflow
def training_workflow(hyperparameters: dict) -> LogisticRegression:
"""Put all of the steps together into a single workflow."""
data = get_data()
processed_data = process_data(data=data)
return train_model(
data=processed_data,
hyperparameters=hyperparameters,
)
Agent Image
Install flytekitplugins-mmcloud
in the agent image.
A float
binary (obtainable via the OpCenter) is required. Copy it to the agent image PATH
.
Sample Dockerfile
for building an agent image:
FROM python:3.11-slim-bookworm
WORKDIR /root
ENV PYTHONPATH /root
# flytekit will autoload the agent if package is installed.
RUN pip install flytekitplugins-mmcloud
COPY float /usr/local/bin/float
CMD pyflyte serve agent --port 8000