Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

formula-validation

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

formula-validation

Package to represent formulas with adducts and process ms data from it.

  • 1.0.4
  • PyPI
  • Socket score

Maintainers
1

Formula Validation Python Module

This Python module contains a Formula class for working with chemical formulas, as well as methods for creating, manipulating, and analyzing formulas. It also includes functionality for dealing with adducts and calculating monoisotopic masses.

Table of Contents

  • Introduction
  • Installation
  • Usage
  • Examples
  • License

Introduction

This Python module provides a Formula class that allows you to work with chemical formulas. It includes the following features:

  • Create Formula objects from Hill notation, SMILES, and InChI.
  • Perform basic mathematical operations on formulas (addition, subtraction, multiplication).
  • Calculate the monoisotopic mass of a formula.
  • Check if a given mass is within a specified tolerance of the formula's mass.
  • Analyze possible fragment masses explained by a formula and adduct.

Installation

To use this module, you'll need Python 3.x and the required dependencies. You can install the dependencies using pip:

pip install rdkit urllib3

## Usage

### Creating Formula Objects

You can create a Formula object using various methods:

- `Formula.formula_from_str_hill(formula_str: str, adduct: str) -> 'Formula'`: Create a Formula object from a chemical formula string in Hill notation.

- `Formula.formula_from_str(formula_str: str, adduct: str, no_api: bool = False) -> 'Formula'`: Create a Formula object from a chemical formula string. You can disable API calls for formula resolution by setting `no_api` to `True`.

- `Formula.formula_from_smiles(smiles: str, adduct: str, no_api: bool = False) -> 'Formula'`: Create a Formula object from a SMILES string representing a molecular structure.

- `Formula.formula_from_inchi(inchi: str, adduct: str, no_api: bool = False) -> 'Formula'`: Create a Formula object from an InChI string representing a molecular structure.

### Basic Operations

You can perform various operations on Formula objects:

- Addition: `formula1 + formula2`
- Subtraction: `formula1 - formula2`
- Multiplication: `formula * num`

### Calculating Mass

You can calculate the monoisotopic mass of a formula and check if it matches an external mass:

- `get_monoisotopic_mass() -> float`: Get the monoisotopic mass of the formula.
- `get_monoisotopic_mass_with_adduct() -> float`: Get the monoisotopic mass of the formula, considering the adduct.
- `check_monoisotopic_mass(external_mass: Union[float, int], mass_tolerance_in_ppm: Union[int, float] = __default_ppm) -> bool`: Check if the monoisotopic mass is within a specified tolerance of an external mass.
- `check_monoisotopic_mass_with_adduct(external_mass: Union[float, int], mass_tolerance_in_ppm: Union[int, float] = __default_ppm) -> bool`: Check if the monoisotopic mass, considering the adduct, is within a specified tolerance of an external mass.

### Fragment Analysis

You can analyze potential fragment masses explained by a formula and adduct:

- `check_possible_fragment_mz(fragment_mz: Union[float, int], ppm: Union[float, int] = __default_ppm) -> bool`: Check if a fragment mass can be explained by the formula and adduct.

- `percentage_intensity_fragments_explained_by_formula(fragments_mz_intensities: Dict[Union[float, int], Union[float, int]], ppm: Union[float, int] = __default_ppm) -> float`: Calculate the percentage of intensity of fragments explained by the formula and adduct.

## Examples

Here are some examples of how to use the Formula class:

```python
# Create Formula objects
formula1 = Formula.formula_from_str_hill("C5H5O4", "[M+H]+")
formula2 = Formula.formula_from_smiles("CCO", "[M+NH4]+")
formula3 = formula1 + formula2

# Calculate monoisotopic mass
mass1 = formula1.get_monoisotopic_mass()
mass2 = formula2.get_monoisotopic_mass_with_adduct()
print(f"Mass of formula1: {mass1}")
print(f"Mass of formula2 with adduct: {mass2}")

# Check mass against an external mass with a tolerance of 5 ppm
check_monoisotopic_mass = formula1.check_monoisotopic_mass(121.05142,5)
check_monoisotopic_mass_with_adduct = formula1.check_monoisotopic_mass_with_adduct(122.05862,5)

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc