New Case Study:See how Anthropic automated 95% of dependency reviews with Socket.Learn More
Socket
Sign inDemoInstall
Socket

gradio-magicquill

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

gradio-magicquill

Gradio library for the interface of MagicQuill, an intelligent interactive image editing system

  • 0.0.1
  • PyPI
  • Socket score

Maintainers
1

tags: [gradio-custom-component, SimpleTextbox] title: gradio_magicquill short_description: A gradio custom component colorFrom: blue colorTo: yellow sdk: gradio pinned: false app_file: space.py

gradio_magicquill

Static Badge

Gradio library for the interface of MagicQuill, an intelligent interactive image editing system

Installation

pip install gradio_magicquill

Usage


import gradio as gr
from gradio_magicquill import MagicQuill
from fastapi import FastAPI, Request
from fastapi.middleware.cors import CORSMiddleware
import uvicorn

import base64
from PIL import Image, ImageOps
import io

css = """
.ms {
    width: 60%;
    margin: auto
}
"""
import random
import time 
def read_base64_image(base64_image):
    if base64_image.startswith("data:image/png;base64,"):
        base64_image = base64_image.split(",")[1]
    elif base64_image.startswith("data:image/jpeg;base64,"):
        base64_image = base64_image.split(",")[1]
    elif base64_image.startswith("data:image/webp;base64,"):
        base64_image = base64_image.split(",")[1]
    else:
        raise ValueError("Unsupported image format.")
    image_data = base64.b64decode(base64_image)
    image = Image.open(io.BytesIO(image_data))
    image = ImageOps.exif_transpose(image)
    return image

def generate_image(x, base_model_version, negative_prompt, dtype, stroke_as_edge, grow_size, edge_strength, color_strength, palette_resolution, inpaint_strength, seed, steps, cfg, sampler_name, scheduler):
    print(x['from_backend']['prompt'])
    time.sleep(0.5)
    
    color_img = read_base64_image(x['from_frontend']['add_color_image'])

    color_img.save("color_img.png")
    return x

with gr.Blocks(title="MagicQuill",css=css) as demo:
    with gr.Row():
        ms = MagicQuill()

    with gr.Row():
        with gr.Column():
            btn = gr.Button("Run", variant="primary")
        with gr.Column():
            with gr.Accordion("parameters"):
                base_model_version = gr.Radio(
                    label="Base Model Version",
                    choices=['SD1.5'],
                    value='SD1.5',
                    interactive=True
                )
                negative_prompt = gr.Textbox(
                    label="Negative Prompt",
                    value="",
                    interactive=True
                )
                dtype = gr.Radio(
                    label="Data Type",
                    choices=['float16', 'bfloat16', 'float32', 'float64'],
                    value='float16',
                    interactive=True
                )
                stroke_as_edge = gr.Radio(
                    label="Stroke as Edge",
                    choices=['enable', 'disable'],
                    value='enable',
                    interactive=True
                )
                grow_size = gr.Slider(
                    label="Grow Size",
                    minimum=0,
                    maximum=100,
                    value=15,
                    step=1,
                    interactive=True
                )
                edge_strength = gr.Slider(
                    label="Edge Strength",
                    minimum=0.0,
                    maximum=5.0,
                    value=0.8,
                    step=0.01,
                    interactive=True
                )
                color_strength = gr.Slider(
                    label="Color Strength",
                    minimum=0.0,
                    maximum=5.0,
                    value=0.5,
                    step=0.01,
                    interactive=True
                )
                palette_resolution = gr.Slider(
                    label="Palette Resolution",
                    minimum=128,
                    maximum=2048,
                    value=2048,
                    step=16,
                    interactive=True
                )
                inpaint_strength = gr.Slider(
                    label="Inpaint Strength",
                    minimum=0.0,
                    maximum=5.0,
                    value=1.0,
                    step=0.01,
                    interactive=True
                )
                seed = gr.Number(
                    label="Seed",
                    value=0,
                    precision=0,
                    interactive=True
                )
                steps = gr.Slider(
                    label="Steps",
                    minimum=1,
                    maximum=50,
                    value=20,
                    interactive=True
                )
                cfg = gr.Slider(
                    label="CFG",
                    minimum=0.0,
                    maximum=100.0,
                    value=4.0,
                    step=0.1,
                    interactive=True
                )
                sampler_name = gr.Dropdown(
                    label="Sampler Name",
                    choices=["euler", "euler_ancestral", "heun", "heunpp2","dpm_2", "dpm_2_ancestral", "lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu", "dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm", "ddim", "uni_pc", "uni_pc_bh2"],
                    value='euler_ancestral',
                    interactive=True
                )
                scheduler = gr.Dropdown(
                    label="Scheduler",
                    choices=["normal", "karras", "exponential", "sgm_uniform", "simple", "ddim_uniform"],
                    value='exponential',
                    interactive=True
                )

        btn.click(generate_image, inputs=[ms, base_model_version, negative_prompt, dtype, stroke_as_edge, grow_size, edge_strength, color_strength, palette_resolution, inpaint_strength, seed, steps, cfg, sampler_name, scheduler], outputs=ms)
            
app = FastAPI()
app.add_middleware(
    CORSMiddleware,
    allow_origins=['*'],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

def get_root_url(
    request: Request, route_path: str, root_path: str | None
):
    print(root_path)
    return root_path
import gradio.route_utils 
gr.route_utils.get_root_url = get_root_url

gr.mount_gradio_app(app, demo, path="/demo", root_path="/demo")

@app.post("/magic_quill/guess_prompt")
async def guess_prompt(request: Request):
    data = await request.json()
    return "mock prompt"

if __name__ == "__main__":
    # uvicorn.run(app, port=8000)
    demo.launch()

MagicQuill

Initialization

nametypedefaultdescription
value
typing.Union[str, typing.Callable, NoneType][
    str, Callable, None
]
NoneNone
theme
str | None
NoneNone
url
str | None
NoneNone
visible
bool
TrueNone
render
bool
TrueNone

User function

The impact on the users predict function varies depending on whether the component is used as an input or output for an event (or both).

  • When used as an Input, the component only impacts the input signature of the user function.
  • When used as an output, the component only impacts the return signature of the user function.

The code snippet below is accurate in cases where the component is used as both an input and an output.

  • As output: Is passed, passes text value as a {str} into the function.
  • As input: Should return, expects a {str} returned from function and sets textarea value to it.
def predict(
    value: str | None
) -> str | None:
    return value

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc