New Case Study:See how Anthropic automated 95% of dependency reviews with Socket.Learn More
Socket
Sign inDemoInstall
Socket

hypernets

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

hypernets

An General Automated Machine Learning Framework

  • 0.3.2
  • PyPI
  • Socket score

Maintainers
1

Python Versions Downloads PyPI Version

We Are Hiring!

Dear folks, we are offering challenging opportunities located in Beijing for both professionals and students who are keen on AutoML/NAS. Come be a part of DataCanvas! Please send your CV to yangjian@zetyun.com. (Application deadline: TBD.)

Hypernets: A General Automated Machine Learning Framework

Hypernets is a general AutoML framework, based on which it can implement automatic optimization tools for various machine learning frameworks and libraries, including deep learning frameworks such as tensorflow, keras, pytorch, and machine learning libraries like sklearn, lightgbm, xgboost, etc. It also adopted various state-of-the-art optimization algorithms, including but not limited to evolution algorithm, monte carlo tree search for single objective optimization and multi-objective optimization algorithms such as MOEA/D,NSGA-II,R-NSGA-II. We introduced an abstract search space representation, taking into account the requirements of hyperparameter optimization and neural architecture search(NAS), making Hypernets a general framework that can adapt to various automated machine learning needs. As an abstraction computing layer, tabular toolbox, has successfully implemented in various tabular data types: pandas, dask, cudf, etc.

Overview

Conceptual Model

Illustration of the Search Space

What's NEW !

Installation

Conda

Install Hypernets with conda from the channel conda-forge:

conda install -c conda-forge hypernets

Pip

Install Hypernets with different options:

  • Typical installation:
pip install hypernets
  • To run Hypernets in JupyterLab/Jupyter notebook, install with command:
pip install hypernets[notebook]
  • To run Hypernets in distributed Dask cluster, install with command:
pip install hypernets[dask]
  • To support dataset with simplified Chinese in feature generation,
    • Install jieba package before running Hypernets.
    • OR install Hypernets with command:
pip install hypernets[zhcn]
  • Install all above with one command:
pip install hypernets[all]

To Verify your installation:

python -m hypernets.examples.smoke_testing

Documents

  • Hypernets: A general automated machine learning (AutoML) framework.
  • HyperGBM: A full pipeline AutoML tool integrated various GBM models.
  • HyperDT/DeepTables: An AutoDL tool for tabular data.
  • HyperTS: A full pipeline AutoML&AutoDL tool for time series datasets.
  • HyperKeras: An AutoDL tool for Neural Architecture Search and Hyperparameter Optimization on Tensorflow and Keras.
  • HyperBoard: A visualization tool for Hypernets.
  • Cooka: Lightweight interactive AutoML system.

DataCanvas AutoML Toolkit

Citation

If you use Hypernets in your research, please cite us as follows:

Jian Yang, Xuefeng Li, Haifeng Wu. Hypernets: A General Automated Machine Learning Framework. https://github.com/DataCanvasIO/Hypernets. 2020. Version 0.2.x.

BibTex:

@misc{hypernets,
  author={Jian Yang, Xuefeng Li, Haifeng Wu},
  title={{Hypernets}: { A General Automated Machine Learning Framework}},
  howpublished={https://github.com/DataCanvasIO/Hypernets},
  note={Version 0.2.x},
  year={2020}
}

DataCanvas

Hypernets is an open source project created by DataCanvas.

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc