Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

info-nce-pytorch

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

info-nce-pytorch

PyTorch implementation of the InfoNCE loss for self-supervised learning.

  • 0.1.4
  • PyPI
  • Socket score

Maintainers
1

InfoNCE

PyTorch implementation of the InfoNCE loss from "Representation Learning with Contrastive Predictive Coding" <https://arxiv.org/abs/1807.03748>__. In contrastive learning, we want to learn how to map high dimensional data to a lower dimensional embedding space. This mapping should place semantically similar samples close together in the embedding space, whilst placing semantically distinct samples further apart. The InfoNCE loss function can be used for the purpose of contrastive learning.

This package is available on PyPI <https://pypi.org/project/info-nce-pytorch/>__ and can be installed via:

.. code::

pip install info-nce-pytorch

Example usage

Can be used without explicit negative keys, whereby each sample is compared with the other samples in the batch.

.. code:: python

loss = InfoNCE()
batch_size, embedding_size = 32, 128
query = torch.randn(batch_size, embedding_size)
positive_key = torch.randn(batch_size, embedding_size)
output = loss(query, positive_key)

Can be used with negative keys, whereby every combination between query and negative key is compared.

.. code:: python

loss = InfoNCE(negative_mode='unpaired') # negative_mode='unpaired' is the default value
batch_size, num_negative, embedding_size = 32, 48, 128
query = torch.randn(batch_size, embedding_size)
positive_key = torch.randn(batch_size, embedding_size)
negative_keys = torch.randn(num_negative, embedding_size)
output = loss(query, positive_key, negative_keys)

Can be used with negative keys, whereby each query sample is compared with only the negative keys it is paired with.

.. code:: python

loss = InfoNCE(negative_mode='paired')
batch_size, num_negative, embedding_size = 32, 6, 128
query = torch.randn(batch_size, embedding_size)
positive_key = torch.randn(batch_size, embedding_size)
negative_keys = torch.randn(batch_size, num_negative, embedding_size)
output = loss(query, positive_key, negative_keys)

Loss graph

Suppose we have some initial mean vectors µ_q, µ_p, µ_n and a covariance matrix Σ = I/10, then we can plot the value of the InfoNCE loss by sampling from distributions with interpolated mean vectors. Given interpolation weights α and β, we define the distribution Q ~ N(µ_q, Σ) for the query samples, the distribution P_α ~ N(αµ_q + (1-α)µ_p, Σ) for the positive samples and the distribution N_β ~ N(βµ_q + (1-β)µ_n, Σ) for the negative samples. Shown below is the value of the loss with inputs sampled from the distributions defined above for different values of α and β.

.. image:: https://raw.githubusercontent.com/RElbers/info-nce-pytorch/main/imgs/loss.png

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc