Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

jardin

Package Overview
Dependencies
Maintainers
2
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

jardin

A Pandas dataframe-based ORM

  • 0.22.12
  • PyPI
  • Socket score

Maintainers
2

jardin

Jardin is a pandas.DataFrame-based ORM for Python applications.

Getting started

In your working directory (the root of your app), create a file named jardin_conf.py:

.. code:: python

# jardin_conf.py

DATABASES = {
  'my_first_database': 'https://username:password@database.url:port',
  'my_second_database': 'https://username:password@database.url:port'
}

LOG_LEVEL = logging.DEBUG

WATERMARK = 'My Great App'

Then, in your app, say you have a table called users:

.. code:: python

# app.py
import jardin

class User(jardin.Model):
  db_names = {'read': 'my_first_database', 'write': 'my_second_database'}

In the console:

.. code:: python

>>> from app import Users
>>> users = User.last(4)
# /* My Great App */ SELECT * FROM users ORDER BY u.created_at DESC LIMIT 4;
>>> users
id   name    email              ...
0    John    john@beatl.es      ...
1    Paul    paul@beatl.es      ...
2    George  george@beatl.es    ...
3    Ringo   ringo@beatl.es     ...

The resulting object is a pandas dataframe:

.. code:: python

>>> import pandas
>>> isinstance(users, pandas.DataFrame)
True
>>> isinstance(users, jardin.Collection)
True

Queries

SELECT queries


Here is the basic syntax to select records from the database

.. code:: python

    >>> users = User.select(select = ['id', 'name'], where = {'email': 'paul@beatl.es'},
                             order = 'id ASC', limit = 1)
    # /* My Great App */ SELECT u.id, u.name FROM users u WHERE u.email = 'paul@beatl.es' ORDER BY u.id ASC LIMIT 1;
    >>> users
    id   name
    1    Paul

Arguments
^^^^^^^^^

-  ``select`` – The list of columns to return. If not provided, all
   columns will be returned.
-  ``where`` – conditions. Many different formats can be used to provide
   conditions. See `docs <#where-argument>`__.
-  ``inner_join``, ``left_join`` – List of tables to join with their
   join condition. Can also be a list of classes if the appropriate
   associations have been declared. See
   `docs <#inner_join-left_join-arguments>`__.
-  ``order`` – order clause
-  ``limit`` – limit clause
-  ``group`` – grouping clause
-  ``scopes`` – list of pre-defined scopes. See docs.

``where`` argument
''''''''''''''''''

Here are the different ways to feed a condition clause to a query. \*
``where = "name = 'John'"`` \* ``where = {'name': 'John'}`` \*
``where = {'id': (0, 3)}`` – selects where ``id`` is between 0 and 3 \*
``where = {'id': [0, 1, 2]}`` – selects where ``id`` is in the array \*
``where = [{'id': (0, 10), 'instrument': 'drums'}, ["created_at > %(created_at)s", {'created_at': '1963-03-22'}]]``

``inner_join``, ``left_join`` arguments
'''''''''''''''''''''''''''''''''''''''

The simplest way to join another table is as follows

.. code:: python

    >>> User.select(inner_join = ["instruments i ON i.id = u.instrument_id"])

If you have configured your models associations, see
`here <#associations>`__, you can simply pass the class as argument:

.. code:: python

    >>> User.select(inner_join = [Instruments])

Individual record selection
^^^^^^^^^^^^^^^^^^^^^^^^^^^

You can also look-up a single record by id:

.. code:: python

    >>> User.find(1)
    # /* My Great App */ SELECT * FROM users u WHERE u.id = 1;
    {'id': 1, 'name': 'Paul', 'email': 'paul@beatl.es', ...}

Note that the returned object is a ``Record`` object which allows you to
access attributes in those way:

.. code:: python

    >>> user['name']
    Paul
    >>> user.name
    Paul

INSERT queries

.. code:: python

>>> user = User.insert(name = 'Pete', email = 'pete@beatl.es')
# /* My Great App */ INSERT INTO users (name, email) VALUES ('Pete', 'pete@beatl.es') RETURNING id;
# /* My Great App */ SELECT u.* FROM users WHERE u.id = 4;
>>> user
id   name    email
4    Pete    pete@beatl.es

UPDATE queries


.. code:: python

    >>> users = User.update(values = {'hair': 'long'}, where = {'name': 'John'})
    # /* My Great App */ UPDATE users u SET (u.hair) = ('long') WHERE u.name = 'John' RETURNING id;
    # /* My Great App */ SELECT * FROM users u WHERE u.name = 'John';

DELETE queries

.. code:: python

>>> User.delete(where = {'id': 1})
# /* My Great App */ DELETE FROM users u WHERE u.id = 1;

Associations

It is possible to define associations between models. For example, if each user has multiple instruments:

.. code:: python

# app.py

import jardin

class MyModel(jardin.Model):
  db_names = {'read': 'my_first_database', 'write': 'my_second_database'}

class Instrument(MyModel):
  belongs_to = {'users': 'user_id'}

class User(MyModel):
  has_many = [Instruments]

and then you can query the associated records:

.. code:: python

>>> users = User.select()
# /* My Great App */ SELECT * FROM users u;
>>> instruments = users.instruments()
# /* My Great App */ SELECT * FROM instruments i WHERE i.id IN (0, 1, ...);

Or you can declare joins more easily

.. code:: python

>>> users = User.select(inner_join = [Instruments])

Scopes

Queries conditions can be generalized across your app:

.. code:: python

# app.py

class User(jardin.Model):
  scopes = {
    'alive': {'name': ['Paul', 'Ringo']},
    'guitarists': {'name': ['John', 'George']}
  }

The key is the name of the scope, and the value is the conditions to be applied. Anything that can be fed to the where argument of Model#select can be used to define a scope.

Use them as such:

.. code:: python

>>> users = User.select(scopes = ['alive'], ...)
# /* My Great App */ SELECT * FROM users u WHERE u.name IN ('Paul', 'Ringo') AND ...;

Misc

Caching


Jardin implements a LRU caching mechanism for the ``jardin.query`` method.

Setup
^^^^^^^^^

To confgure, add in ``jardin_conf.py``.

.. code:: python

    # jardin_conf.py

    # to configure cache methods:

    CACHE = {
        'methods' : {
            'disk': {
                'dir': <path to cache directory>, # default to `/tmp/jardin_cache` 
                'limit': 100000, # maximum size in bytes of cached files. when size of cache is above limit, files are deleted based on LRU # default to None
                },
            's3': {
                'bucket_name': <bucket name>,
                'path': <path>, # subfolder path where all cached files will be placed
                'delete_expired_files': False # default is False

            }
        },
        'method': <default method> # default to None
    }

Methods supported
^^^^^^^^^^^^^^^^^^

-  disk (files saved in ``feather`` format)
-  S3
-  memcached (coming soon)

Usage
^^^^^^^^^

Then, you can use it with:

.. code:: python

    >>> df = jardin.query(sql, params, db="jardin_db", cache=True, ttl=10, cache_method="s3")


Watermark and trace

Multiple databases



Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc