Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

keras-models

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

keras-models

Keras Models Hub

  • 0.0.7
  • PyPI
  • Socket score

Maintainers
1

Keras Models Hub

PyPI - Downloads

This repo aims at providing both reusable Keras Models and pre-trained models, which could easily integrated into your projects.

Install

pip install keras-models

If you will using the NLP models, you need run one more command:

python -m spacy download xx_ent_wiki_sm

Usage Guide

Import

import kearasmodels

Examples

Reusable Models

LinearModel

DNN

CNN

from keras_models.models import CNN

# fake data
X = np.random.normal(0, 1.0, size=500 * 100 * 100 * 3).reshape(500, 100, 100, 3)
w1 = np.random.normal(0, 1.0, size=100)
w2 = np.random.normal(0, 1.0, size=3)
Y = np.dot(np.dot(np.dot(X, w2), w1), w1) + np.random.randint(1)

# initialize & train model
model = CNN(input_shape=X.shape[1:], filters=[32, 64], kernel_size=(2, 2), pool_size=(3, 3), padding='same', r_dropout=0.25, num_classes=1)
model.compile(optimizer='adam', loss=mean_squared_error, metrics=['mae', 'mse'])
model.summary()

model.fit(X, Y, batch_size=16, epochs=100, validation_split=0.1)

SkipGram

WideDeep

Pre-trained Models

VGG16_Places365

This model is forked from GKalliatakis/Keras-VGG16-places365 and CSAILVision/places365

from keras_models.models.pretrained import vgg16_places365
labels = vgg16_places365.predict(['your_image_file_pathname.jpg', 'another.jpg'], n_top=3)

# Example Result: labels = [['cafeteria', 'food_court', 'restaurant_patio'], ['beach', 'sand']]

Models

  • LinearModel
  • DNN
  • WideDeep
  • TextCNN
  • TextDNN
  • SkipGram
  • ResNet
  • VGG16_Places365 [pre-trained]
  • working on more models

Citation

WideDeep

Cheng H T, Koc L, Harmsen J, et al. 
Wide & deep learning for recommender systems[C]
Proceedings of the 1st workshop on deep learning for recommender systems. ACM, 2016: 7-10.

TextCNN

Kim Y. 
Convolutional neural networks for sentence classification[J]. 
arXiv preprint arXiv:1408.5882, 2014.

SkipGram

Mikolov T, Chen K, Corrado G, et al. 
Efficient estimation of word representations in vector space[J]. 
arXiv preprint arXiv:1301.3781, 2013.

VGG16_Places365

Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., & Torralba, A.
Places: A 10 million Image Database for Scene Recognition
IEEE Transactions on Pattern Analysis and Machine Intelligence

ResNet

He K, Zhang X, Ren S, et al. 
Deep residual learning for image recognition[C]
Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778.

Contribution

Please submit PR if you want to contribute, or submit issues for new model requirements.

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc