Langroid
is an intuitive, lightweight, extensible and principled
Python framework to easily build LLM-powered applications, from CMU and UW-Madison researchers.
You set up Agents, equip them with optional components (LLM,
vector-store and tools/functions), assign them tasks, and have them
collaboratively solve a problem by exchanging messages.
This Multi-Agent paradigm is inspired by the
Actor Framework
(but you do not need to know anything about this!).
Langroid
is a fresh take on LLM app-development, where considerable thought has gone
into simplifying the developer experience;
it does not use Langchain
, or any other LLM framework.
:fire: Read the (WIP) overview of the langroid architecture
š¢ Companies are using/adapting Langroid in production. Here is a quote:
Nullify uses AI Agents for secure software development.
It finds, prioritizes and fixes vulnerabilities. We have internally adapted Langroid's multi-agent orchestration framework in production, after evaluating CrewAI, Autogen, LangChain, Langflow, etc. We found Langroid to be far superior to those frameworks in terms of ease of setup and flexibility. Langroid's Agent and Task abstractions are intuitive, well thought out, and provide a great developer experience. We wanted the quickest way to get something in production. With other frameworks it would have taken us weeks, but with Langroid we got to good results in minutes. Highly recommended!
-- Jacky Wong, Head of AI at Nullify.
:fire: See this Intro to Langroid
blog post from the LanceDB team
:fire: Just published in ML for Healthcare (2024): a Langroid-based Multi-Agent RAG system for
pharmacovigilance, see blog post
We welcome contributions: See the contributions document
for ideas on what to contribute.
Are you building LLM Applications, or want help with Langroid for your company,
or want to prioritize Langroid features for your company use-cases?
Prasad Chalasani is available for consulting
(advisory/development): pchalasani at gmail dot com.
Sponsorship is also accepted via GitHub Sponsors
Questions, Feedback, Ideas? Join us on Discord!
Quick glimpse of coding with Langroid
This is just a teaser; there's much more, like function-calling/tools,
Multi-Agent Collaboration, Structured Information Extraction, DocChatAgent
(RAG), SQLChatAgent, non-OpenAI local/remote LLMs, etc. Scroll down or see docs for more.
See the Langroid Quick-Start Colab
that builds up to a 2-agent information-extraction example using the OpenAI ChatCompletion API.
See also this version that uses the OpenAI Assistants API instead.
:fire: just released! Example
script showing how you can use Langroid multi-agents and tools
to extract structured information from a document using only a local LLM
(Mistral-7b-instruct-v0.2).
import langroid as lr
import langroid.language_models as lm
llm_cfg = lm.OpenAIGPTConfig(
chat_model=lm.OpenAIChatModel.GPT4_TURBO,
)
mdl = lm.OpenAIGPT(llm_cfg)
response = mdl.chat("What is the capital of Ontario?", max_tokens=10)
agent_cfg = lr.ChatAgentConfig(llm=llm_cfg)
agent = lr.ChatAgent(agent_cfg)
agent.llm_response("What is the capital of China?")
response = agent.llm_response("And India?")
task = lr.Task(agent, name="Bot", system_message="You are a helpful assistant")
task.run("Hello")
teacher_agent = lr.ChatAgent(agent_cfg)
teacher_task = lr.Task(
teacher_agent, name="Teacher",
system_message="""
Ask your student concise numbers questions, and give feedback.
Start with a question.
"""
)
student_agent = lr.ChatAgent(agent_cfg)
student_task = lr.Task(
student_agent, name="Student",
system_message="Concisely answer the teacher's questions.",
single_round=True,
)
teacher_task.add_sub_task(student_task)
teacher_task.run()
:fire: Updates/Releases
Click to expand
- Oct 2024:
- Sep 2024:
- 0.16.0 Support for OpenAI
o1-mini
and o1-preview
models. - 0.15.0 Cerebras API support -- run llama-3.1 models hosted on Cerebras Cloud (very fast inference).
- 0.14.0
DocChatAgent
uses Reciprocal Rank Fusion (RRF) to rank chunks retrieved by different methods. - 0.12.0
run_batch_task
new option -- stop_on_first_result
- allows termination of batch as soon as any task returns a result.
- Aug 2024:
- 0.11.0 Polymorphic
Task.run(), Task.run_async
. - 0.10.0 Allow tool handlers to return arbitrary result type, including other tools.
- 0.9.0 Orchestration Tools, to signal various task statuses, and to pass messages between agents.
- 0.7.0 OpenAI tools API support, including multi-tools.
- Jul 2024:
- Jun 2024:
- 0.2.0: Improved lineage tracking, granular sub-task configs, and a new tool,
RewindTool
,
that lets an agent "rewind and redo" a past message (and all dependent messages are cleared out
thanks to the lineage tracking). Read notes here.
- May 2024:
- Slimmer langroid: All document-parsers (i.e. pdf, doc, docx) and most
vector-databases (except qdrant)
are now optional/extra dependencies, which helps reduce build size, script
start-up time, and install time. For convenience various grouping of "extras" are
provided, e.g.
doc-chat
, db
(for database-related dependencies). See updated
install instructions below and in the docs. - Few-shot examples for tools: when defining a ToolMessage, previously you were able to include a classmethod named
examples
,
and a random example from this list would be used to generate a 1-shot example
for the LLM. This has been improved so you can now supply a list of examples
where each example is either a tool instance, or a tuple of (description,
tool instance), where the description is a "thought" that leads the LLM to use
the tool (see example in the docs). In some scenarios this can improve LLM tool
generation accuracy. Also, now instead of a random example, ALL examples are used to generate few-shot
examples. - Infinite loop detection for task loops of cycle-length <= 10 (configurable
in
TaskConfig
. Only detects exact loops, rather than approximate loops where the entities are saying essentially similar (but not exactly the same) things repeatedly. - "@"-addressing: any entity can address any other by name, which can be the name
of an agent's responder ("llm", "user", "agent") or a sub-task name. This is a
simpler alternative to the
RecipientTool
mechanism, with the tradeoff that
since it's not a tool, there's no way to enforce/remind the LLM to explicitly
specify an addressee (in scenarios where this is important). - Much-Improved Citation
generation and display when using
DocChatAgent
. gpt-4o
is now the default LLM throughout; Update tests and examples to work
with this LLM; use tokenizer corresponding to the LLM.gemini 1.5 pro
support via litellm
QdrantDB:
update to support learned sparse embeddings.
- Apr 2024:
- 0.1.236: Support for open LLMs hosted on Groq, e.g. specify
chat_model="groq/llama3-8b-8192"
.
See tutorial. - 0.1.235:
Task.run(), Task.run_async(), run_batch_tasks
have max_cost
and max_tokens
params to exit when tokens or cost exceed a limit. The result
ChatDocument.metadata
now includes a status
field which is a code indicating a
task completion reason code. Also task.run()
etc can be invoked with an explicit
session_id
field which is used as a key to look up various settings in Redis cache.
Currently only used to look up "kill status" - this allows killing a running task, either by task.kill()
or by the classmethod Task.kill_session(session_id)
.
For example usage, see the test_task_kill
in tests/main/test_task.py
- Mar 2024:
- 0.1.216: Improvements to allow concurrent runs of
DocChatAgent
, see the
test_doc_chat_agent.py
in particular the test_doc_chat_batch()
;
New task run utility: run_batch_task_gen
where a task generator can be specified, to generate one task per input. - 0.1.212: ImagePdfParser: support for extracting text from image-based PDFs.
(this means
DocChatAgent
will now work with image-pdfs). - 0.1.194 - 0.1.211: Misc fixes, improvements, and features:
- Big enhancement in RAG performance (mainly, recall) due to a fix in Relevance
Extractor
DocChatAgent
context-window fixes- Anthropic/Claude3 support via Litellm
URLLoader
: detect file time from header when URL doesn't end with a
recognizable suffix like .pdf
, .docx
, etc.- Misc lancedb integration fixes
- Auto-select embedding config based on whether
sentence_transformer
module is available. - Slim down dependencies, make some heavy ones optional, e.g.
unstructured
,
haystack
, chromadb
, mkdocs
, huggingface-hub
, sentence-transformers
. - Easier top-level imports from
import langroid as lr
- Improve JSON detection, esp from weak LLMs
- Feb 2024:
- 0.1.193: Support local LLMs using Ollama's new OpenAI-Compatible server:
simply specify
chat_model="ollama/mistral"
. See release notes. - 0.1.183: Added Chainlit support via callbacks.
See examples.
- Jan 2024:
- 0.1.175
- Neo4jChatAgent to chat with a neo4j knowledge-graph.
(Thanks to Mohannad!). The agent uses tools to query the Neo4j schema and translate user queries to Cypher queries,
and the tool handler executes these queries, returning them to the LLM to compose
a natural language response (analogous to how
SQLChatAgent
works).
See example script using this Agent to answer questions about Python pkg dependencies. - Support for
.doc
file parsing (in addition to .docx
) - Specify optional
formatter
param
in OpenAIGPTConfig
to ensure accurate chat formatting for local LLMs.
- 0.1.157:
DocChatAgentConfig
has a new param: add_fields_to_content
, to specify additional document fields to insert into
the main content
field, to help improve retrieval. - 0.1.156: New Task control signals
PASS_TO, SEND_TO; VectorStore: Compute Pandas expression on documents; LanceRAGTaskCreator creates 3-agent RAG system with Query Planner, Critic and RAG Agent.
- Dec 2023:
- 0.1.154: (For details see release notes of 0.1.149
and 0.1.154).
DocChatAgent
: Ingest Pandas dataframes and filtering.LanceDocChatAgent
leverages LanceDB
vector-db for efficient vector search
and full-text search and filtering.- Improved task and multi-agent control mechanisms
LanceRAGTaskCreator
to create a 2-agent system consisting of a LanceFilterAgent
that
decides a filter and rephrase query to send to a RAG agent.
- 0.1.141:
API Simplifications to reduce boilerplate:
auto-select an available OpenAI model (preferring gpt-4-turbo), simplifies defaults.
Simpler
Task
initialization with default ChatAgent
.
- Nov 2023:
-
0.1.126:
OpenAIAssistant agent: Caching Support.
-
0.1.117: Support for OpenAI Assistant API tools: Function-calling,
Code-intepreter, and Retriever (RAG), file uploads. These work seamlessly
with Langroid's task-orchestration.
Until docs are ready, it's best to see these usage examples:
-
0.1.112: OpenAIAssistant
is a subclass of ChatAgent
that
leverages the new OpenAI Assistant API. It can be used as a drop-in
replacement for ChatAgent
, and relies on the Assistant API to
maintain conversation state, and leverages persistent threads and
assistants to reconnect to them if needed. Examples:
test_openai_assistant.py
,
test_openai_assistant_async.py
-
0.1.111: Support latest OpenAI model: GPT4_TURBO
(see test_llm.py for example usage)
-
0.1.110: Upgrade from OpenAI v0.x to v1.1.1 (in preparation for
Assistants API and more); (litellm
temporarily disabled due to OpenAI
version conflict).
- Oct 2023:
- 0.1.107:
DocChatAgent
re-rankers: rank_with_diversity
, rank_to_periphery
(lost in middle). - 0.1.102:
DocChatAgentConfig.n_neighbor_chunks > 0
allows returning context chunks around match. - 0.1.101:
DocChatAgent
uses RelevanceExtractorAgent
to have
the LLM extract relevant portions of a chunk using
sentence-numbering, resulting in huge speed up and cost reduction
compared to the naive "sentence-parroting" approach (writing out full
sentences out relevant whole sentences) which LangChain
uses in their
LLMChainExtractor
. - 0.1.100: API update: all of Langroid is accessible with a single import, i.e.
import langroid as lr
. See the documentation for usage. - 0.1.99: Convenience batch functions to run tasks, agent methods on a list of inputs concurrently in async mode. See examples in test_batch.py.
- 0.1.95: Added support for Momento Serverless Vector Index
- 0.1.94: Added support for LanceDB vector-store -- allows vector, Full-text, SQL search.
- 0.1.84: Added LiteLLM, so now Langroid can be used with over 100 LLM providers (remote or local)!
See guide here.
- Sep 2023:
- 0.1.78: Async versions of several Task, Agent and LLM methods;
Nested Pydantic classes are now supported for LLM Function-calling, Tools, Structured Output.
- 0.1.76: DocChatAgent: support for loading
docx
files (preliminary). - 0.1.72: Many improvements to DocChatAgent: better embedding model,
hybrid search to improve retrieval, better pdf parsing, re-ranking retrieved results with cross-encoders.
- Use with local LLama Models: see tutorial here
- Langroid Blog/Newsletter Launched!: First post is here -- Please subscribe to stay updated.
- 0.1.56: Support Azure OpenAI.
- 0.1.55: Improved
SQLChatAgent
that efficiently retrieves relevant schema info when translating natural language to SQL.
- Aug 2023:
- July 2023:
:rocket: Demo
Suppose you want to extract structured information about the key terms
of a commercial lease document. You can easily do this with Langroid using a two-agent system,
as we show in the langroid-examples repo.
(See this script
for a version with the same functionality using a local Mistral-7b model.)
The demo showcases just a few of the many features of Langroid, such as:
- Multi-agent collaboration:
LeaseExtractor
is in charge of the task, and its LLM (GPT4) generates questions
to be answered by the DocAgent
. - Retrieval augmented question-answering, with source-citation:
DocAgent
LLM (GPT4) uses retrieval from a vector-store to
answer the LeaseExtractor
's questions, cites the specific excerpt supporting the answer. - Function-calling (also known as tool/plugin): When it has all the information it
needs, the
LeaseExtractor
LLM presents the information in a structured
format using a Function-call.
Here is what it looks like in action
(a pausable mp4 video is here).
:zap: Highlights
(For a more up-to-date list see the
Updates/Releases
section above)
- Agents as first-class citizens: The Agent class encapsulates LLM conversation state,
and optionally a vector-store and tools. Agents are a core abstraction in Langroid;
Agents act as message transformers, and by default provide 3 responder methods, one corresponding to each entity: LLM, Agent, User.
- Tasks: A Task class wraps an Agent, and gives the agent instructions (or roles, or goals),
manages iteration over an Agent's responder methods,
and orchestrates multi-agent interactions via hierarchical, recursive
task-delegation. The
Task.run()
method has the same
type-signature as an Agent's responder's methods, and this is key to how
a task of an agent can delegate to other sub-tasks: from the point of view of a Task,
sub-tasks are simply additional responders, to be used in a round-robin fashion
after the agent's own responders. - Modularity, Reusability, Loose coupling: The
Agent
and Task
abstractions allow users to design
Agents with specific skills, wrap them in Tasks, and combine tasks in a flexible way. - LLM Support: Langroid supports OpenAI LLMs as well as LLMs from hundreds of
providers (local/open or remote/commercial) via proxy libraries and local model servers
such as ollama, oobabooga, LiteLLM that in effect mimic the OpenAI API.
- Caching of LLM responses: Langroid supports Redis and
Momento to cache LLM responses.
- Vector-stores: LanceDB, Qdrant, Chroma are currently supported.
Vector stores allow for Retrieval-Augmented-Generation (RAG).
- Grounding and source-citation: Access to external documents via vector-stores
allows for grounding and source-citation.
- Observability, Logging, Lineage: Langroid generates detailed logs of multi-agent interactions and
maintains provenance/lineage of messages, so that you can trace back
the origin of a message.
- Tools/Plugins/Function-calling:
Langroid supports OpenAI's function calling, as
well as an equivalent
ToolMessage
mechanism which works with
any LLM, not just OpenAI's.
Function calling and tools have the same developer-facing interface, implemented
using Pydantic,
which makes it very easy to define tools/functions and enable agents
to use them. Benefits of using Pydantic are that you never have to write
complex JSON specs for function calling, and when the LLM
hallucinates malformed JSON, the Pydantic error message is sent back to
the LLM so it can fix it.
:gear: Installation and Setup
Install langroid
Langroid requires Python 3.11+. We recommend using a virtual environment.
Use pip
to install a bare-bones slim version of langroid
(from PyPi) to your virtual
environment:
pip install langroid
The core Langroid package lets you use OpenAI Embeddings models via their API.
If you instead want to use the sentence-transformers
embedding models from HuggingFace,
install Langroid like this:
pip install "langroid[hf-embeddings]"
For many practical scenarios, you may need additional optional dependencies:
- To use various document-parsers, install langroid with the
doc-chat
extra:
pip install "langroid[doc-chat]"
- For "chat with databases", use the
db
extra:
pip install "langroid[db]"
``
- You can specify multiple extras by separating them with commas, e.g.:
pip install "langroid[doc-chat,db]"
- To simply install all optional dependencies, use the
all
extra (but note that this will result in longer load/startup times and a larger install size):
pip install "langroid[all]"
Optional Installs for using SQL Chat with a PostgreSQL DB
If you are using SQLChatAgent
(e.g. the script examples/data-qa/sql-chat/sql_chat.py
),
with a postgres db, you will need to:
- Install PostgreSQL dev libraries for your platform, e.g.
sudo apt-get install libpq-dev
on Ubuntu,brew install postgresql
on Mac, etc.
- Install langroid with the postgres extra, e.g.
pip install langroid[postgres]
or poetry add langroid[postgres]
or poetry install -E postgres
.
If this gives you an error, try pip install psycopg2-binary
in your virtualenv.
:memo: If you get strange errors involving mysqlclient
, try doing pip uninstall mysqlclient
followed by pip install mysqlclient
.
Set up environment variables (API keys, etc)
To get started, all you need is an OpenAI API Key.
If you don't have one, see this OpenAI Page.
(Note that while this is the simplest way to get started, Langroid works with practically any LLM, not just those from OpenAI.
See the guides to using Open/Local LLMs,
and other non-OpenAI proprietary LLMs.)
In the root of the repo, copy the .env-template
file to a new file .env
:
cp .env-template .env
Then insert your OpenAI API Key.
Your .env
file should look like this (the organization is optional
but may be required in some scenarios).
OPENAI_API_KEY=your-key-here-without-quotes
OPENAI_ORGANIZATION=optionally-your-organization-id
Alternatively, you can set this as an environment variable in your shell
(you will need to do this every time you open a new shell):
export OPENAI_API_KEY=your-key-here-without-quotes
Optional Setup Instructions (click to expand)
All of the following environment variable settings are optional, and some are only needed
to use specific features (as noted below).
- Qdrant Vector Store API Key, URL. This is only required if you want to use Qdrant cloud.
Alternatively Chroma or LanceDB are also currently supported.
We use the local-storage version of Chroma, so there is no need for an API key.
- Redis Password, host, port: This is optional, and only needed to cache LLM API responses
using Redis Cloud. Redis offers a free 30MB Redis account
which is more than sufficient to try out Langroid and even beyond.
If you don't set up these, Langroid will use a pure-python
Redis in-memory cache via the Fakeredis library.
- Momento Serverless Caching of LLM API responses (as an alternative to Redis).
To use Momento instead of Redis:
- enter your Momento Token in the
.env
file, as the value of MOMENTO_AUTH_TOKEN
(see example file below), - in the
.env
file set CACHE_TYPE=momento
(instead of CACHE_TYPE=redis
which is the default).
- GitHub Personal Access Token (required for apps that need to analyze git
repos; token-based API calls are less rate-limited). See this
GitHub page.
- Google Custom Search API Credentials: Only needed to enable an Agent to use the
GoogleSearchTool
.
To use Google Search as an LLM Tool/Plugin/function-call,
you'll need to set up
a Google API key,
then setup a Google Custom Search Engine (CSE) and get the CSE ID.
(Documentation for these can be challenging, we suggest asking GPT4 for a step-by-step guide.)
After obtaining these credentials, store them as values of
GOOGLE_API_KEY
and GOOGLE_CSE_ID
in your .env
file.
Full documentation on using this (and other such "stateless" tools) is coming soon, but
in the meantime take a peek at this chat example, which
shows how you can easily equip an Agent with a GoogleSearchtool
.
If you add all of these optional variables, your .env
file should look like this:
OPENAI_API_KEY=your-key-here-without-quotes
GITHUB_ACCESS_TOKEN=your-personal-access-token-no-quotes
CACHE_TYPE=redis
REDIS_PASSWORD=your-redis-password-no-quotes
REDIS_HOST=your-redis-hostname-no-quotes
REDIS_PORT=your-redis-port-no-quotes
MOMENTO_AUTH_TOKEN=your-momento-token-no-quotes
QDRANT_API_KEY=your-key
QDRANT_API_URL=https://your.url.here:6333
GOOGLE_API_KEY=your-key
GOOGLE_CSE_ID=your-cse-id
Optional setup instructions for Microsoft Azure OpenAI(click to expand)
When using Azure OpenAI, additional environment variables are required in the
.env
file.
This page Microsoft Azure OpenAI
provides more information, and you can set each environment variable as follows:
AZURE_OPENAI_API_KEY
, from the value of API_KEY
AZURE_OPENAI_API_BASE
from the value of ENDPOINT
, typically looks like https://your.domain.azure.com
.- For
AZURE_OPENAI_API_VERSION
, you can use the default value in .env-template
, and latest version can be found here AZURE_OPENAI_DEPLOYMENT_NAME
is the name of the deployed model, which is defined by the user during the model setupAZURE_OPENAI_MODEL_NAME
Azure OpenAI allows specific model names when you select the model for your deployment. You need to put precisly the exact model name that was selected. For example, GPT-3.5 (should be gpt-35-turbo-16k
or gpt-35-turbo
) or GPT-4 (should be gpt-4-32k
or gpt-4
).AZURE_OPENAI_MODEL_VERSION
is required if AZURE_OPENAI_MODEL_NAME = gpt=4
, which will assist Langroid to determine the cost of the model
:whale: Docker Instructions
We provide a containerized version of the langroid-examples
repository via this Docker Image.
All you need to do is set up environment variables in the .env
file.
Please follow these steps to setup the container:
wget -O .env https://raw.githubusercontent.com/langroid/langroid/main/.env-template
nano .env
docker run -it --rm -v ./.env:/langroid/.env langroid/langroid
python examples/<Path/To/Example.py>
:tada: Usage Examples
These are quick teasers to give a glimpse of what you can do with Langroid
and how your code would look.
:warning: The code snippets below are intended to give a flavor of the code
and they are not complete runnable examples! For that we encourage you to
consult the langroid-examples
repository.
:information_source:
The various LLM prompts and instructions in Langroid
have been tested to work well with GPT-4 (and to some extent GPT-4o).
Switching to other LLMs (local/open and proprietary) is easy (see guides mentioned above),
and may suffice for some applications, but in general you may see inferior results
unless you adjust the prompts and/or the multi-agent setup.
:book: Also see the
Getting Started Guide
for a detailed tutorial.
Click to expand any of the code examples below.
All of these can be run in a Colab notebook:
Direct interaction with OpenAI LLM
import langroid.language_models as lm
mdl = lm.OpenAIGPT()
messages = [
lm.LLMMessage(content="You are a helpful assistant", role=lm.Role.SYSTEM),
lm.LLMMessage(content="What is the capital of Ontario?", role=lm.Role.USER),
]
response = mdl.chat(messages, max_tokens=200)
print(response.message)
Interaction with non-OpenAI LLM (local or remote)
Local model: if model is served at `http://localhost:8000`:
cfg = lm.OpenAIGPTConfig(
chat_model="local/localhost:8000",
chat_context_length=4096
)
mdl = lm.OpenAIGPT(cfg)
If the model is supported by liteLLM
,
then no need to launch the proxy server.
Just set the chat_model
param above to litellm/[provider]/[model]
, e.g.
litellm/anthropic/claude-instant-1
and use the config object as above.
Note that to use litellm
you need to install langroid with the litellm
extra:
poetry install -E litellm
or pip install langroid[litellm]
.
For remote models, you will typically need to set API Keys etc as environment variables.
You can set those based on the LiteLLM docs.
If any required environment variables are missing, Langroid gives a helpful error
message indicating which ones are needed.
Note that to use langroid
with litellm
you need to install the litellm
extra, i.e. either pip install langroid[litellm]
in your virtual env,
or if you are developing within the langroid
repo,
poetry install -E litellm
.
pip install langroid[litellm]
Define an agent, set up a task, and run it
import langroid as lr
agent = lr.ChatAgent()
task = lr.Task(agent, name="Bot")
task.run()
Three communicating agents
A toy numbers game, where when given a number n
:
repeater_task
's LLM simply returns n
,even_task
's LLM returns n/2
if n
is even, else says "DO-NOT-KNOW"odd_task
's LLM returns 3*n+1
if n
is odd, else says "DO-NOT-KNOW"
Each of these Task
s automatically configures a default ChatAgent
.
import langroid as lr
from langroid.utils.constants import NO_ANSWER
repeater_task = lr.Task(
name = "Repeater",
system_message="""
Your job is to repeat whatever number you receive.
""",
llm_delegate=True,
single_round=False,
)
even_task = lr.Task(
name = "EvenHandler",
system_message=f"""
You will be given a number.
If it is even, divide by 2 and say the result, nothing else.
If it is odd, say {NO_ANSWER}
""",
single_round=True,
)
odd_task = lr.Task(
name = "OddHandler",
system_message=f"""
You will be given a number n.
If it is odd, return (n*3+1), say nothing else.
If it is even, say {NO_ANSWER}
""",
single_round=True,
)
Then add the even_task
and odd_task
as sub-tasks of repeater_task
,
and run the repeater_task
, kicking it off with a number as input:
repeater_task.add_sub_task([even_task, odd_task])
repeater_task.run("3")
Simple Tool/Function-calling example
Langroid leverages Pydantic to support OpenAI's
Function-calling API
as well as its own native tools. The benefits are that you don't have to write
any JSON to specify the schema, and also if the LLM hallucinates a malformed
tool syntax, Langroid sends the Pydantic validation error (suitably sanitized)
to the LLM so it can fix it!
Simple example: Say the agent has a secret list of numbers,
and we want the LLM to find the smallest number in the list.
We want to give the LLM a probe
tool/function which takes a
single number n
as argument. The tool handler method in the agent
returns how many numbers in its list are at most n
.
First define the tool using Langroid's ToolMessage
class:
import langroid as lr
class ProbeTool(lr.agent.ToolMessage):
request: str = "probe"
purpose: str = """
To find how many numbers in my list are less than or equal to
the <number> you specify.
"""
number: int
Then define a SpyGameAgent
as a subclass of ChatAgent
,
with a method probe
that handles this tool:
class SpyGameAgent(lr.ChatAgent):
def __init__(self, config: lr.ChatAgentConfig):
super().__init__(config)
self.numbers = [3, 4, 8, 11, 15, 25, 40, 80, 90]
def probe(self, msg: ProbeTool) -> str:
return str(len([n for n in self.numbers if n <= msg.number]))
We then instantiate the agent and enable it to use and respond to the tool:
spy_game_agent = SpyGameAgent(
lr.ChatAgentConfig(
name="Spy",
vecdb=None,
use_tools=False,
use_functions_api=True,
)
)
spy_game_agent.enable_message(ProbeTool)
For a full working example see the
chat-agent-tool.py
script in the langroid-examples
repo.
Tool/Function-calling to extract structured information from text
Suppose you want an agent to extract
the key terms of a lease, from a lease document, as a nested JSON structure.
First define the desired structure via Pydantic models:
from pydantic import BaseModel
class LeasePeriod(BaseModel):
start_date: str
end_date: str
class LeaseFinancials(BaseModel):
monthly_rent: str
deposit: str
class Lease(BaseModel):
period: LeasePeriod
financials: LeaseFinancials
address: str
Then define the LeaseMessage
tool as a subclass of Langroid's ToolMessage
.
Note the tool has a required argument terms
of type Lease
:
import langroid as lr
class LeaseMessage(lr.agent.ToolMessage):
request: str = "lease_info"
purpose: str = """
Collect information about a Commercial Lease.
"""
terms: Lease
Then define a LeaseExtractorAgent
with a method lease_info
that handles this tool,
instantiate the agent, and enable it to use and respond to this tool:
class LeaseExtractorAgent(lr.ChatAgent):
def lease_info(self, message: LeaseMessage) -> str:
print(
f"""
DONE! Successfully extracted Lease Info:
{message.terms}
"""
)
return json.dumps(message.terms.dict())
lease_extractor_agent = LeaseExtractorAgent()
lease_extractor_agent.enable_message(LeaseMessage)
See the chat_multi_extract.py
script in the langroid-examples
repo for a full working example.
Chat with documents (file paths, URLs, etc)
Langroid provides a specialized agent class DocChatAgent
for this purpose.
It incorporates document sharding, embedding, storage in a vector-DB,
and retrieval-augmented query-answer generation.
Using this class to chat with a collection of documents is easy.
First create a DocChatAgentConfig
instance, with a
doc_paths
field that specifies the documents to chat with.
import langroid as lr
from langroid.agent.special import DocChatAgentConfig, DocChatAgent
config = DocChatAgentConfig(
doc_paths = [
"https://en.wikipedia.org/wiki/Language_model",
"https://en.wikipedia.org/wiki/N-gram_language_model",
"/path/to/my/notes-on-language-models.txt",
],
vecdb=lr.vector_store.QdrantDBConfig(),
)
Then instantiate the DocChatAgent
(this ingests the docs into the vector-store):
agent = DocChatAgent(config)
Then we can either ask the agent one-off questions,
agent.llm_response("What is a language model?")
or wrap it in a Task
and run an interactive loop with the user:
task = lr.Task(agent)
task.run()
See full working scripts in the
docqa
folder of the langroid-examples
repo.
:fire: Chat with tabular data (file paths, URLs, dataframes)
Using Langroid you can set up a TableChatAgent
with a dataset (file path, URL or dataframe),
and query it. The Agent's LLM generates Pandas code to answer the query,
via function-calling (or tool/plugin), and the Agent's function-handling method
executes the code and returns the answer.
Here is how you can do this:
import langroid as lr
from langroid.agent.special import TableChatAgent, TableChatAgentConfig
Set up a TableChatAgent
for a data file, URL or dataframe
(Ensure the data table has a header row; the delimiter/separator is auto-detected):
dataset = "https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-red.csv"
agent = TableChatAgent(
config=TableChatAgentConfig(
data=dataset,
)
)
Set up a task, and ask one-off questions like this:
task = lr.Task(
agent,
name = "DataAssistant",
default_human_response="",
)
result = task.run(
"What is the average alcohol content of wines with a quality rating above 7?",
turns=2
)
print(result.content)
Or alternatively, set up a task and run it in an interactive loop with the user:
task = lr.Task(agent, name="DataAssistant")
task.run()
For a full working example see the
table_chat.py
script in the langroid-examples
repo.
:heart: Thank you to our supporters
If you like this project, please give it a star ā and š¢ spread the word in your network or social media:
Your support will help build Langroid's momentum and community.
Langroid Co-Founders
- Prasad Chalasani (IIT BTech/CS, CMU PhD/ML; Independent ML Consultant)
- Somesh Jha (IIT BTech/CS, CMU PhD/CS; Professor of CS, U Wisc at Madison)