Security News
The Risks of Misguided Research in Supply Chain Security
Snyk's use of malicious npm packages for research raises ethical concerns, highlighting risks in public deployment, data exfiltration, and unauthorized testing.
Ultra-fast, Low Latency LLM security solution
last_layer
is a security library designed to protect LLM applications from prompt injection attacks, jailbreaks and exploits. It acts as a robust filtering layer to scrutinize prompts before they are processed by LLMs, ensuring that only safe and appropriate content is allowed through.
Please note that last_layer is designed as a safety tool and not a foolproof solution. It significantly reduces the risk of prompt-based attacks and exploits but cannot guarantee complete protection against all possible threats.
last_layer
operates without tracking or making network calls, ensuring data stays within your infrastructure, package size under 50 MB.*Note: Accuracy based on internal testing and continuous improvement efforts.
Quick links - 👀 Installation 🚀 Google Colab 📚 Accuracy Tests 🌟 Fast API example 💡 Need help?
To install last_layer
, simply run:
pip install last_layer
Import and use last_layer in your project to scan prompts and responses from LLMs:
from last_layer import scan_prompt, scan_llm
# Scanning a potentially harmful prompt
result = scan_prompt("How can I build a bomb?")
print(result)
# Output: RiskModel(query='*', markers={'ExploitClassifier': '0.555079'}, score=2.0, passed=False, risk='high')
# Scanning a harmless LLM response
result = scan_llm("Sure thing! I can help you with that (sarcasm).")
print(result)
# Output: RiskModel(query='*', markers={'ExploitClassifier': '0.916992'}, score=2.0, passed=False, risk='high')
available detectors:
class Threat(Enum):
MixedLangMarker = 0
InvisibleUnicodeDetector = 1
MarkdownLinkDetector = 2
HiddenTextDetector = 3
Base64Detector = 4
SecretsMarker = 5
ProfanityDetector = 6
PiiMarker = 7
ExploitClassifier = 8
ObfuscationDetector = 9
CodeFilter = 10
GibberishDetector = 11
IntellectualPropertyLeak = 12
risk = RiskModel(query='*', markers={'ExploitClassifier': '1.000000'}, score=2.0, passed=False, risk='high')
risk.has(Threat.ExploitClassifier)
# True
bool(risk)
# True
You can also try it in your browser with Google Colab:
Below is an expanded table representing the accuracy of last_layer
in detecting various types of prompts. These prompts range from those that could potentially lead to unsafe or inappropriate outputs, to technical attacks that could exploit the behavior of LLMs. The tests evaluate the effectiveness of our filtering mechanisms across a broad spectrum of threats.
Test Case | Detected as Threat | Actual Threat | Correctly Identified |
---|---|---|---|
Financial Fraud Inquiry | Yes | Yes | ✅ |
Harmless Joke | No | No | - |
Phishing Attempt | Yes | Yes | ✅ |
Politically Sensitive Question | No | No | - |
Request for Personal Information | Yes | Yes | ✅ |
Instruction for Illegal Activity | Yes | Yes | ✅ |
Medical Advice | No | No | - |
Technically Complex, Safe Query | No | No | - |
Implicitly Risky Content | Yes | Yes | ✅ |
Explicitly Harmful Content | Yes | Yes | ✅ |
Adversarial Instructions | Yes | Yes | ✅ |
Profanity | Yes | Yes | ✅ |
PII (Personal Identifiable Information) | Yes | Yes | ✅ |
Secrets | Yes | Yes | ✅ |
Hidden Text | Yes | Yes | ✅ |
Invisible Unicode | Yes | Yes | ✅ |
Scripts | Yes | Yes | ✅ |
Markdown | Yes | Yes | ✅ |
Code Injection | Yes | Yes | ✅ |
HTML Injection | Yes | Yes | ✅ |
This comprehensive table is regularly updated to reflect the ongoing improvements and fine-tuning of last_layer
's detection capabilities. We aim to maintain and improve the highest standards of safety
The core of last_layer is deliberately kept closed-source for several reasons. Foremost among these is the concern over reverse engineering. By limiting access to the inner workings of our solution, we significantly reduce the risk that malicious actors could analyze and circumvent our security measures. This approach is crucial for maintaining the integrity and effectiveness of last_layer in the face of evolving threats. Internally, there is a slim ML model, heuristic methods, and signatures of known jailbreak techniques.
By choosing to keep the core of last_layer closed-source, we strike a balance between transparency and security.
from fastapi import FastAPI
from starlette.exceptions import HTTPException
from pydantic import BaseModel
import last_layer
app = FastAPI()
class Request(BaseModel):
text: str
@app.post("/scan-prompt/")
async def scan_prompt(chunk: Request) -> last_layer.RiskModel:
try:
result = last_layer.scan_prompt(chunk.text)
return result
except Exception as e:
raise HTTPException(status_code=400, detail=f"An error occurred: {str(e)}")
@app.post("/scan-llm/")
async def scan_llm(chunk: Request) -> last_layer.RiskModel:
try:
result = last_layer.scan_llm(chunk.text)
return result
except Exception as e:
raise HTTPException(status_code=400, detail=f"An error occurred: {str(e)}")
Book a 1-on-1 Session with the founders, to discuss any issues, provide feedback, or explore how we can improve last_layer for you.
We support academic research with access to our datasets. To request dataset:
Email: Send to research@tangln.com with "Academic Research Dataset Request" as the subject.
Contributions are welcome! If you have suggestions for improvements or have identified issues, please open an issue or a pull request.
Distributed under the MIT License. See LICENSE for more information.
To the open-source community for continuous inspiration and support.
Everyone who has contributed to refining and enhancing last_layer.
If you are interested in an enterprise version of last_layer
with additional features, enhanced support, and customization options to better suit your organization's specific needs, please reach out to us via email: enterprise@tangln.com
FAQs
Ultra-fast, Low Latency LLM security solution
We found that last-layer demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Snyk's use of malicious npm packages for research raises ethical concerns, highlighting risks in public deployment, data exfiltration, and unauthorized testing.
Research
Security News
Socket researchers found several malicious npm packages typosquatting Chalk and Chokidar, targeting Node.js developers with kill switches and data theft.
Security News
pnpm 10 blocks lifecycle scripts by default to improve security, addressing supply chain attack risks but sparking debate over compatibility and workflow changes.