Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

liesym

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

liesym

Sympy Lie Algebra extensions powered by rust.

  • 0.8.1
  • PyPI
  • Socket score

Maintainers
1

liesym

Lie Algebras using Sympy and backend powered by Rust's pyO3 and ndarray

Overview

In an effort to supply python with the same computer algebra software (CAS) capabilities, SymPy was written. This python library is well written and allows an open source alternative to proprietary choices like Mathematica/WolframLanguage and Maple. Due to the nature of how SymPy was written, certain symbolic calculation can be extremely unoptimized in python. Even using numpy could offer little speed ups as it is not geared towards rational numbers (fractions). Sympy does currently offer a liealgebras module, but due to the performance limitations, certain tradeoffs had to be made such as locking the basis for the classic lie algebras in favor of speed. This is a fair trade off, but would require anyone using a different basis to hand calculate the representations of the algebra all over again. An alternative to solve this problem would be to use a compiled backend that supports generics (and isn't a pain to build with python).

Rust has good python binding support through py03 and allows easy communication through numpy using rust-numpy as well as numpy like api inside rust using ndarray.

Install

pip install liesym

Examples

See also example notebook

import liesym as ls
from sympy import Matrix
from IPython.display import display, Markdown
from sympy.printing.str import StrPrinter
Cartan Matrix
A3 = ls.A(3)
A3.cartan_matrix

$$\displaystyle \left[\begin{matrix}2 & -1 & 0\\ -1 & 2 & -1\\0 & -1 & 2\end{matrix}\right]$$

Positive Roots
for i in A3.positive_roots():
    display(i)

$$\displaystyle \left[\begin{matrix}1 & 0 & 1\end{matrix}\right]$$

$$\displaystyle \left[\begin{matrix}-1 & 1 & 1\end{matrix}\right]$$

$$\displaystyle \left[\begin{matrix}1 & 1 & -1\end{matrix}\right]$$

$$\displaystyle \left[\begin{matrix}-1 & 2 & -1\end{matrix}\right]$$

$$\displaystyle \left[\begin{matrix}0 & -1 & 2\end{matrix}\right]$$

$$\displaystyle \left[\begin{matrix}2 & -1 & 0\end{matrix}\right]$$

Simple Roots
for i in A3.simple_roots():
    display(i)

$$\displaystyle \left[\begin{matrix}1 & -1 & 0 & 0\end{matrix}\right]$$

$$\displaystyle \left[\begin{matrix}0 & 1 & -1 & 0\end{matrix}\right]$$

$$\displaystyle \left[\begin{matrix}0 & 0 & 1 & -1\end{matrix}\right]$$

Fundamental Weights
for i in A3.fundamental_weights(): # defaulted to orthogonal basis
    display(i)

$$\displaystyle \left[\begin{matrix}\frac{3}{4} & - \frac{1}{4} & - \frac{1}{4} & - \frac{1}{4}\end{matrix}\right]$$

$$\displaystyle \left[\begin{matrix}\frac{1}{2} & \frac{1}{2} & - \frac{1}{2} & - \frac{1}{2}\end{matrix}\right]$$

$$\displaystyle \left[\begin{matrix}\frac{1}{4} & \frac{1}{4} & \frac{1}{4} & - \frac{3}{4}\end{matrix}\right]$$

Dimension of representation
table = """\
| Dim | Irrep Name | Rep (Omega) |
| :-: | :-: | :-: |
"""
for i in A3.fundamental_weights(basis="omega"):
    table += f"""\
| {A3.dim(i)} | $${A3.dim_name(i)}$$  | $${i.table(StrPrinter())}$$|
"""
Markdown(table)
DimIrrep NameRep (Omega)
4$$4$$$$[1, 0, 0]$$
6$$6$$$$[0, 1, 0]$$
4$$\bar{4}$$$$[0, 0, 1]$$
Name of rep

Commonly in literature (especially physics), names of the reps are the dimension rather than the matrix rep.

A3.dim_name(Matrix([[0, 0, 1]]))

$$\displaystyle \bar{4}$$

A3.irrep_lookup(r"\bar{4}")

$$\displaystyle \left[\begin{matrix}0 & 0 & 1\end{matrix}\right]$$

Tensor product decomps

The decomp of irreps from a product of irreps

results = A3.tensor_product_decomposition([
    Matrix([[1,0,0]]),
    Matrix([[1,0,0]]),
])

table = """\
| Rep | Dim name |
| :-: | :-: |
"""
for i in results:
    table += f"""\
| $${i.table(StrPrinter())}$$ | $${A3.dim_name(i)}$$ |  
"""
Markdown(table)
RepDim name
$$[0, 1, 0]$$$$6$$
$$[2, 0, 0]$$$$\bar{10}$$
Lie Groups

Currently supports SU(N), SO(N), Sp(N)

su2 = ls.SU(2)
su2.generators()
[Matrix([
 [  0, 1/2],
 [1/2,   0]]),
 Matrix([
 [  0, -I/2],
 [I/2,    0]]),
 Matrix([
 [1/2,    0],
 [  0, -1/2]])]
# cartan generators
su2.generators(cartan_only=True)
[Matrix([
 [1/2,    0],
 [  0, -1/2]])]

Structure constants. SU(2) structure constants are $e_{ijk}$

su2.structure_constants()

$$\displaystyle \left[\begin{matrix}\left[\begin{matrix}0 & 0 & 0\\0 & 0 & 1\\0 & -1 & 0\end{matrix}\right] & \left[\begin{matrix}0 & 0 & -1\\0 & 0 & 0\\1 & 0 & 0\end{matrix}\right] & \left[\begin{matrix}0 & 1 & 0\\ -1 & 0 & 0\\0 & 0 & 0\end{matrix}\right]\end{matrix}\right]$$

A1 = ls.A(1)
for x in A1.simple_roots(basis="omega"):
    display(x)

$$\displaystyle \left[\begin{matrix}2\end{matrix}\right]$$

Quadratic Casimir

s = ls.Sp(6)
r = s.algebra.fundamental_weights()[0]
s.quadratic_casimir(r)

$$\displaystyle \frac{7}{2}$$

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc