Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

llama-index-llms-anthropic

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

llama-index-llms-anthropic

llama-index llms anthropic integration

  • 0.5.0
  • PyPI
  • Socket score

Maintainers
1

LlamaIndex LLM Integration: Anthropic

Anthropic is an AI research company focused on developing advanced language models, notably the Claude series. Their flagship model, Claude, is designed to generate human-like text while prioritizing safety and alignment with human intentions. Anthropic aims to create AI systems that are not only powerful but also responsible, addressing potential risks associated with artificial intelligence.

Installation

%pip install llama-index-llms-anthropic
!pip install llama-index
# Set Tokenizer
# First we want to set the tokenizer, which is slightly different than TikToken.
# NOTE: The Claude 3 tokenizer has not been updated yet; using the existing Anthropic tokenizer leads
# to context overflow errors for 200k tokens. We've temporarily set the max tokens for Claude 3 to 180k.

Basic Usage

from llama_index.llms.anthropic import Anthropic
from llama_index.core import Settings

tokenizer = Anthropic().tokenizer
Settings.tokenizer = tokenizer

# Call complete with a prompt
import os

os.environ["ANTHROPIC_API_KEY"] = "YOUR ANTHROPIC API KEY"
from llama_index.llms.anthropic import Anthropic

# To customize your API key, do this
# otherwise it will lookup ANTHROPIC_API_KEY from your env variable
# llm = Anthropic(api_key="<api_key>")
llm = Anthropic(model="claude-3-opus-20240229")

resp = llm.complete("Paul Graham is ")
print(resp)

# Sample response
# Paul Graham is a well-known entrepreneur, programmer, venture capitalist, and essayist.
# He is best known for co-founding Viaweb, one of the first web application companies, which was later
# sold to Yahoo! in 1998 and became Yahoo! Store. Graham is also the co-founder of Y Combinator, a highly
# successful startup accelerator that has helped launch numerous successful companies, such as Dropbox,
# Airbnb, and Reddit.

Using Anthropic model through Vertex AI

import os

os.environ["ANTHROPIC_PROJECT_ID"] = "YOUR PROJECT ID HERE"
os.environ["ANTHROPIC_REGION"] = "YOUR PROJECT REGION HERE"
# Set region and project_id to make Anthropic use the Vertex AI client

llm = Anthropic(
    model="claude-3-5-sonnet@20240620",
    region=os.getenv("ANTHROPIC_REGION"),
    project_id=os.getenv("ANTHROPIC_PROJECT_ID"),
)

resp = llm.complete("Paul Graham is ")
print(resp)

Chat example with a list of messages

from llama_index.core.llms import ChatMessage
from llama_index.llms.anthropic import Anthropic

messages = [
    ChatMessage(
        role="system", content="You are a pirate with a colorful personality"
    ),
    ChatMessage(role="user", content="Tell me a story"),
]
resp = Anthropic(model="claude-3-opus-20240229").chat(messages)
print(resp)

Streaming example

from llama_index.llms.anthropic import Anthropic

llm = Anthropic(model="claude-3-opus-20240229", max_tokens=100)
resp = llm.stream_complete("Paul Graham is ")
for r in resp:
    print(r.delta, end="")

Chat streaming with pirate story

llm = Anthropic(model="claude-3-opus-20240229")
messages = [
    ChatMessage(
        role="system", content="You are a pirate with a colorful personality"
    ),
    ChatMessage(role="user", content="Tell me a story"),
]
resp = llm.stream_chat(messages)
for r in resp:
    print(r.delta, end="")

Configure Model

from llama_index.llms.anthropic import Anthropic

llm = Anthropic(model="claude-3-sonnet-20240229")
resp = llm.stream_complete("Paul Graham is ")
for r in resp:
    print(r.delta, end="")

Async completion

from llama_index.llms.anthropic import Anthropic

llm = Anthropic("claude-3-sonnet-20240229")
resp = await llm.acomplete("Paul Graham is ")
print(resp)

Structured Prediction Example

from llama_index.llms.anthropic import Anthropic
from llama_index.core.prompts import PromptTemplate
from llama_index.core.bridge.pydantic import BaseModel
from typing import List


class MenuItem(BaseModel):
    """A menu item in a restaurant."""

    course_name: str
    is_vegetarian: bool


class Restaurant(BaseModel):
    """A restaurant with name, city, and cuisine."""

    name: str
    city: str
    cuisine: str
    menu_items: List[MenuItem]


llm = Anthropic("claude-3-5-sonnet-20240620")
prompt_tmpl = PromptTemplate(
    "Generate a restaurant in a given city {city_name}"
)

# Option 1: Use `as_structured_llm`
restaurant_obj = (
    llm.as_structured_llm(Restaurant)
    .complete(prompt_tmpl.format(city_name="Miami"))
    .raw
)
print(restaurant_obj)

# Option 2: Use `structured_predict`
# restaurant_obj = llm.structured_predict(Restaurant, prompt_tmpl, city_name="Miami")

# Streaming Structured Prediction
from llama_index.core.llms import ChatMessage
from IPython.display import clear_output
from pprint import pprint

input_msg = ChatMessage.from_str("Generate a restaurant in San Francisco")

sllm = llm.as_structured_llm(Restaurant)
stream_output = sllm.stream_chat([input_msg])
for partial_output in stream_output:
    clear_output(wait=True)
    pprint(partial_output.raw.dict())

LLM Implementation example

https://docs.llamaindex.ai/en/stable/examples/llm/anthropic/

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc