New Case Study:See how Anthropic automated 95% of dependency reviews with Socket.Learn More
Socket
Sign inDemoInstall
Socket

llama-index-llms-openai

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

llama-index-llms-openai

llama-index llms openai integration

  • 0.3.25
  • PyPI
  • Socket score

Maintainers
1

LlamaIndex Llms Integration: Openai

Installation

To install the required package, run:

%pip install llama-index-llms-openai

Setup

  1. Set your OpenAI API key as an environment variable. You can replace "sk-..." with your actual API key:
import os

os.environ["OPENAI_API_KEY"] = "sk-..."

Basic Usage

Generate Completions

To generate a completion for a prompt, use the complete method:

from llama_index.llms.openai import OpenAI

resp = OpenAI().complete("Paul Graham is ")
print(resp)

Chat Responses

To send a chat message and receive a response, create a list of ChatMessage instances and use the chat method:

from llama_index.core.llms import ChatMessage

messages = [
    ChatMessage(
        role="system", content="You are a pirate with a colorful personality."
    ),
    ChatMessage(role="user", content="What is your name?"),
]
resp = OpenAI().chat(messages)
print(resp)

Streaming Responses

Stream Complete

To stream responses for a prompt, use the stream_complete method:

from llama_index.llms.openai import OpenAI

llm = OpenAI()
resp = llm.stream_complete("Paul Graham is ")
for r in resp:
    print(r.delta, end="")

Stream Chat

To stream chat responses, use the stream_chat method:

from llama_index.llms.openai import OpenAI
from llama_index.core.llms import ChatMessage

llm = OpenAI()
messages = [
    ChatMessage(
        role="system", content="You are a pirate with a colorful personality."
    ),
    ChatMessage(role="user", content="What is your name?"),
]
resp = llm.stream_chat(messages)
for r in resp:
    print(r.delta, end="")

Configure Model

You can specify a particular model when creating the OpenAI instance:

llm = OpenAI(model="gpt-3.5-turbo")
resp = llm.complete("Paul Graham is ")
print(resp)

messages = [
    ChatMessage(
        role="system", content="You are a pirate with a colorful personality."
    ),
    ChatMessage(role="user", content="What is your name?"),
]
resp = llm.chat(messages)
print(resp)

Asynchronous Usage

You can also use asynchronous methods for completion:

from llama_index.llms.openai import OpenAI

llm = OpenAI(model="gpt-3.5-turbo")
resp = await llm.acomplete("Paul Graham is ")
print(resp)

Set API Key at a Per-Instance Level

If desired, you can have separate LLM instances use different API keys:

from llama_index.llms.openai import OpenAI

llm = OpenAI(model="gpt-3.5-turbo", api_key="BAD_KEY")
resp = OpenAI().complete("Paul Graham is ")
print(resp)

LLM Implementation example

https://docs.llamaindex.ai/en/stable/examples/llm/openai/

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc