Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

lollmsvectordb

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

lollmsvectordb

A modular text-based database manager for retrieval-augmented generation (RAG), seamlessly integrating with the LoLLMs ecosystem.

  • 1.2.6
  • PyPI
  • Socket score

Maintainers
1

LoLLMsVectorDB

LoLLMsVectorDB: A modular text-based database manager for retrieval-augmented generation (RAG), seamlessly integrating with the LoLLMs ecosystem. Supports various vectorization methods and directory bindings for efficient text data management.

Features

  • Flexible Vectorization: Supports multiple vectorization methods including TF-IDF and Word2Vec.
  • Directory Binding: Automatically updates the vector store with text data from a specified directory.
  • Efficient Search: Provides fast and accurate search results with metadata to locate the original text chunks.
  • Modular Design: Easily extendable to support new vectorization methods and functionalities.

Installation

pip install lollmsvectordb

Usage

Example with TFIDFVectorizer

from lollmsvectordb import TFIDFVectorizer, VectorDatabase, DirectoryBinding

# Initialize the vectorizer
tfidf_vectorizer = TFIDFVectorizer()
tfidf_vectorizer.fit(["This is a sample text.", "Another sample text."])

# Create the vector database
db = VectorDatabase("vector_db.sqlite", tfidf_vectorizer)

# Bind a directory to the vector database
directory_binding = DirectoryBinding("path_to_your_directory", db)

# Update the vector store with text data from the directory
directory_binding.update_vector_store()

# Search for a query in the vector database
results = directory_binding.search("This is a sample text.")
print(results)

Adding New Vectorization Methods

To add a new vectorization method, create a subclass of the Vectorizer class and implement the vectorize method.

from lollmsvectordb import Vectorizer

class CustomVectorizer(Vectorizer):
    def vectorize(self, data):
        # Implement your custom vectorization logic here
        pass

Contributing

Contributions are welcome! Please fork the repository and submit a pull request.

License

This project is licensed under the MIT License.

Contact

For any questions or suggestions, feel free to reach out to the author:

  • Twitter: @ParisNeo_AI
  • Discord: Join our Discord
  • Sub-Reddit: r/lollms
  • Instagram: spacenerduino

Acknowledgements

Special thanks to the LoLLMs community for their continuous support and contributions.

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc