![License: GPL v3](https://img.shields.io/badge/License-GPLv3-blue.svg)
MAFESE (Metaheuristic Algorithms for FEature SElection) is the biggest python library for feature selection (FS)
problem using meta-heuristic algorithms.
- 🆓 Free software: GNU General Public License (GPL) V3 license
- 🔄 Total Wrapper-based (Metaheuristic Algorithms): > 200 methods
- 📊 Total Filter-based (Statistical-based): > 15 methods
- 🌳 Total Embedded-based (Tree and Lasso): > 10 methods
- 🔍 Total Unsupervised-based: ≥ 4 methods
- 📂 Total datasets: ≥ 30 (47 classifications and 7 regressions)
- 📈 Total performance metrics: ≥ 61 (45 regressions and 16 classifications)
- ⚙️ Total objective functions (as fitness functions): ≥ 61 (45 regressions and 16 classifications)
- 📖 Documentation: https://mafese.readthedocs.io/en/latest/
- 🐍 Python versions: ≥ 3.7.x
- 📦 Dependencies:
numpy
, scipy
, scikit-learn
, pandas
, mealpy
, permetrics
, plotly
, kaleido
Citation Request
Please include these citations if you plan to use this incredible library:
@article{van2024feature,
title={Feature selection using metaheuristics made easy: Open source MAFESE library in Python},
author={Van Thieu, Nguyen and Nguyen, Ngoc Hung and Heidari, Ali Asghar},
journal={Future Generation Computer Systems},
year={2024},
publisher={Elsevier},
doi={10.1016/j.future.2024.06.006},
url={https://doi.org/10.1016/j.future.2024.06.006},
}
@article{van2023mealpy,
title={MEALPY: An open-source library for latest meta-heuristic algorithms in Python},
author={Van Thieu, Nguyen and Mirjalili, Seyedali},
journal={Journal of Systems Architecture},
year={2023},
publisher={Elsevier},
doi={10.1016/j.sysarc.2023.102871}
}
Usage
Goals
- Our library provides all state-of-the-art feature selection methods:
- Unsupervised-based FS
- Filter-based FS
- Embedded-based FS
- Regularization (Lasso-based)
- Tree-based methods
- Wrapper-based FS
- Sequential-based: forward and backward
- Recursive-based
- MHA-based: Metaheuristic Algorithms
Installation
$ pip install mafese
After installation, you can import MAFESE and check its installed version:
$ python
>>> import mafese
>>> mafese.__version__
Lib's structure
docs
examples
mafese
data/
cls/
aggregation.csv
Arrhythmia.csv
...
reg/
boston-housing.csv
diabetes.csv
...
wrapper/
mha.py
recursive.py
sequential.py
embedded/
lasso.py
tree.py
filter.py
unsupervised.py
utils/
correlation.py
data_loader.py
encoder.py
estimator.py
mealpy_util.py
transfer.py
validator.py
__init__.py
selector.py
README.md
setup.py
Examples
Let's go through some examples.
1. First, load dataset. You can use the available datasets from Mafese:
from mafese import get_dataset
get_dataset("unknown")
data = get_dataset("Arrhythmia")
- Or you can load your own dataset
import pandas as pd
from mafese import Data
dataset = pd.read_csv('examples/dataset.csv', index_col=0).values
X, y = dataset[:, 0:-1], dataset[:, -1]
data = Data(X, y)
2. Next, prepare your dataset
2.1 Split dataset into train and test set
data.split_train_test(test_size=0.2, inplace=True)
print(data.X_train[:2].shape)
print(data.y_train[:2].shape)
2.2 Feature Scaling
data.X_train, scaler_X = data.scale(data.X_train, scaling_methods=("standard", "minmax"))
data.X_test = scaler_X.transform(data.X_test)
data.y_train, scaler_y = data.encode_label(data.y_train)
data.y_test = scaler_y.transform(data.y_test)
3. Next, choose the Selector that you want to use by first import them:
from mafese import UnsupervisedSelector, FilterSelector, LassoSelector, TreeSelector
from mafese import SequentialSelector, RecursiveSelector, MhaSelector, MultiMhaSelector
from mafese.unsupervised import UnsupervisedSelector
from mafese.filter import FilterSelector
from mafese.embedded.lasso import LassoSelector
from mafese.embedded.tree import TreeSelector
from mafese.wrapper.sequential import SequentialSelector
from mafese.wrapper.recursive import RecursiveSelector
from mafese.wrapper.mha import MhaSelector, MultiMhaSelector
4. Next, create an instance of Selector class you want to use:
feat_selector = UnsupervisedSelector(problem='classification', method='DR', n_features=5)
feat_selector = FilterSelector(problem='classification', method='SPEARMAN', n_features=5)
feat_selector = LassoSelector(problem="classification", estimator="lasso", estimator_paras={"alpha": 0.1})
feat_selector = TreeSelector(problem="classification", estimator="tree")
feat_selector = SequentialSelector(problem="classification", estimator="knn", n_features=3, direction="forward")
feat_selector = RecursiveSelector(problem="classification", estimator="rf", n_features=5)
feat_selector = MhaSelector(problem="classification", estimator="knn",
optimizer="BaseGA", optimizer_paras=None,
transfer_func="vstf_01", obj_name="AS")
list_optimizers = ("OriginalWOA", "OriginalGWO", "OriginalTLO", "OriginalGSKA")
list_paras = [{"epoch": 10, "pop_size": 30}, ]*4
feat_selector = MultiMhaSelector(problem="classification", estimator="knn",
list_optimizers=list_optimizers, list_optimizer_paras=list_paras,
transfer_func="vstf_01", obj_name="AS")
5. Fit the model to X_train and y_train
feat_selector.fit(data.X_train, data.y_train)
6. Get the information
print(feat_selector.selected_feature_masks)
print(feat_selector.selected_feature_solution)
print(feat_selector.selected_feature_indexes)
7. Call transform() on the X that you want to filter it down to selected features
X_train_selected = feat_selector.transform(data.X_train)
X_test_selected = feat_selector.transform(data.X_test)
8.You can build your own evaluating method or use our method.
If you use our method, don't transform the data.
8.1 You can use difference estimator than the one used in feature selection process
feat_selector.evaluate(estimator="svm", data=data, metrics=["AS", "PS", "RS"])
like this:
{'AS_train': 0.77176, 'PS_train': 0.54177, 'RS_train': 0.6205, 'AS_test': 0.72636, 'PS_test': 0.34628, 'RS_test': 0.52747}
8.2 You can use the same estimator in feature selection process
X_test, y_test = data.X_test, data.y_test
feat_selector.evaluate(estimator=None, data=data, metrics=["AS", "PS", "RS"])
For more usage examples please look at examples folder.
Support
Some popular questions
- Where do I find the supported metrics like above ["AS", "PS", "RS"]. What is that?
You can find it here: https://github.com/thieu1995/permetrics or use this
from mafese import MhaSelector
print(MhaSelector.SUPPORTED_REGRESSION_METRICS)
print(MhaSelector.SUPPORTED_CLASSIFICATION_METRICS)
- How do I know my Selector support which estimator? which methods?
print(feat_selector.SUPPORT)
Or you better read the document from: https://mafese.readthedocs.io/en/latest/
- I got this type of error. How to solve it?
raise ValueError("Existed at least one new label in y_pred.")
ValueError: Existed at least one new label in y_pred.
This occurs only when you are working on a classification problem with a small dataset that has many classes. For
instance, the "Zoo" dataset contains only 101 samples, but it has 7 classes. If you split the dataset into a
training and testing set with a ratio of around 80% - 20%, there is a chance that one or more classes may appear
in the testing set but not in the training set. As a result, when you calculate the performance metrics, you may
encounter this error. You cannot predict or assign new data to a new label because you have no knowledge about the
new label. There are several solutions to this problem.
- 1st: Use the SMOTE method to address imbalanced data and ensure that all classes have the same number of samples.
from imblearn.over_sampling import SMOTE
import pandas as pd
from mafese import Data
dataset = pd.read_csv('examples/dataset.csv', index_col=0).values
X, y = dataset[:, 0:-1], dataset[:, -1]
X_new, y_new = SMOTE().fit_resample(X, y)
data = Data(X_new, y_new)
- 2nd: Use different random_state numbers in split_train_test() function.
import pandas as pd
from mafese import Data
dataset = pd.read_csv('examples/dataset.csv', index_col=0).values
X, y = dataset[:, 0:-1], dataset[:, -1]
data = Data(X, y)
data.split_train_test(test_size=0.2, random_state=10)
Official Links
Related Documents
- https://neptune.ai/blog/feature-selection-methods
- https://www.blog.trainindata.com/feature-selection-machine-learning-with-python/
- https://github.com/LBBSoft/FeatureSelect
- https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-2754-0
- https://github.com/scikit-learn-contrib/boruta_py
- https://elki-project.github.io/
- https://sci2s.ugr.es/keel/index.php
- https://archive.ics.uci.edu/datasets
- https://python-charts.com/distribution/box-plot-plotly/
- https://plotly.com/python/box-plots/?_ga=2.50659434.2126348639.1688086416-114197406.1688086416#box-plot-styling-mean--standard-deviation