![Oracle Drags Its Feet in the JavaScript Trademark Dispute](https://cdn.sanity.io/images/cgdhsj6q/production/919c3b22c24f93884c548d60cbb338e819ff2435-1024x1024.webp?w=400&fit=max&auto=format)
Security News
Oracle Drags Its Feet in the JavaScript Trademark Dispute
Oracle seeks to dismiss fraud claims in the JavaScript trademark dispute, delaying the case and avoiding questions about its right to the name.
markets-data-manager
Advanced tools
This package fetches and processes capital markets data from NSE (National Stock Exchange, India)
This package fetches and processes capital markets data from NSE (National Stock Exchange, India). Following data can be retrieved
The package can perform technical functions on price of Index and Stocks. Following functions are supported.
The calculation pipeline is quite extensible and more functions can be added externally.
from datareader.data_reader import NseIndicesReader
reader = NseIndicesReader()
from datareader.data_reader import DateRangeDataReader
daterange_reader = DateRangeDataReader(reader)
from_date = datetime.date(1990, 1, 1)
to_date = datetime.date.today() + datetime.timedelta(days=-1)
result = daterange_reader.read(from_date = from_date, to_date = to_date)
Below example demonstrates calculating RSI using the calculation pipeline. The datepart calculation is pre-requisite for RSI calculation.
# import classes & setup options
from dataprocess.data_processor import HistoricalDataProcessor, MultiDataCalculationPipelines, CalculationPipelineBuilder, HistoricalDataProcessOptions
from calculations.base import DatePartsCalculationWorker
options = HistoricalDataProcessOptions()
options.include_monthly_data = False
options.include_annual_data = False
histDataProcessor = HistoricalDataProcessor(options)
# Fetch the data
year_start = datetime.date(2023, 1, 1)
to_date = datetime.date.today() + datetime.timedelta(days=-1)
result = histDataProcessor.process(reader, {'from_date': year_start, 'to_date': to_date})
# Prepare calculation pipeline
pipelines = MultiDataCalculationPipelines()
pipelines.set_item('date_parts', CalculationPipelineBuilder.create_pipeline_for_worker(DatePartsCalculationWorker()))
pipelines.set_item('rsi', CalculationPipelineBuilder.create_rsi_calculation_pipeline())
histDataProcessor.set_calculation_pipelines(pipelines)
# Run the pipeline
histDataProcessor.run_calculation_pipelines()
result.get_daily_data()
In this use case, understand the affect of RSI and Stochastic RSI on price
# prepare calculation pipeline
periods = [1, 7, 15, 30, 45]
pipelines = MultiDataCalculationPipelines()
pipelines.set_item('date_parts', CalculationPipelineBuilder.create_pipeline_for_worker(DatePartsCalculationWorker()))
pipelines.set_item('rsi', CalculationPipelineBuilder.create_rsi_calculation_pipeline(crossing_above_flag_value = 75, crossing_below_flag_value = 30, window = 14))
pipelines.set_item('stoch_rsi', CalculationPipelineBuilder.create_stoch_rsi_calculation_pipeline(crossing_above_flag_value = 80, crossing_below_flag_value = 20, window = 14))
pipelines.set_item('foward_looking_fall', CalculationPipelineBuilder.create_forward_looking_price_fall_pipeline(periods))
pipelines.set_item('foward_looking_rise', CalculationPipelineBuilder.create_forward_looking_price_rise_pipeline(periods))
histDataProcessor.set_calculation_pipelines(pipelines=pipelines)
# run the pipeline and show results
histDataProcessor.run_calculation_pipelines()
daily_data = result.get_daily_data()
# Import constants so its easier to refer to column names
from core.column_definition import BaseColumns, CalculatedColumns
# get names of fwd looking price column names. Since, these column names are auto-generated there no constants for them
fwd_looking_price_fall_cols, fwd_looking_price_rise_cols = [x for x in daily_data.columns if 'HighestPercFallInNext' in x], \
[x for x in daily_data.columns if 'HighestPercRiseInNext' in x]
# analyse the median price change % for highest price fall whenever the RSI crosses above
daily_data[
(daily_data[CalculatedColumns.RsiCrossedAbove])
][fwd_looking_price_fall_cols].median()
# analyse the median price change % for highest price rise whenever the RSI crosses below
daily_data[
(daily_data[CalculatedColumns.RsiCrossedAbove])
][fwd_looking_price_rise_cols].median()
FAQs
This package fetches and processes capital markets data from NSE (National Stock Exchange, India)
We found that markets-data-manager demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Oracle seeks to dismiss fraud claims in the JavaScript trademark dispute, delaying the case and avoiding questions about its right to the name.
Security News
The Linux Foundation is warning open source developers that compliance with global sanctions is mandatory, highlighting legal risks and restrictions on contributions.
Security News
Maven Central now validates Sigstore signatures, making it easier for developers to verify the provenance of Java packages.