mixscatter
Table of Contents
Overview
mixscatter is a pure python package for the calculation of scattering functions of
multi-component mixtures of interacting spherical scatterers in the Born approximation
(Rayleigh-Gans-Debye scattering).
Key Features:
- Calculation of scattering amplitudes, measurable intensities, form factors, structure factors, and diffusion coefficients.
- Flexible construction of systems with arbitrary compositions and complex scattering length density profiles.
- Suitable for researchers and developers working on particulate systems characterization.
Take a look at these publications if you are interested:
- P. Salgi and R. Rajagopalan, "Polydispersity in colloids: implications to static structure and
scattering", Adv. Colloid Interface Sci. 43, 169-288 (1993)
- A. Vrij, "Mixtures of hard spheres in the Percus–Yevick approximation. Light scattering at
finite angles", J. Chem. Phys. 71, 3267-3270 (1979)
- R. Botet, S. Kwok and B. Cabane, "Percus-Yevick structure factors made simple",
J. Appl. Cryst. 53, 1570-1582 (2020)
- J. Diaz Maier, K. Gaus and J. Wagner, "Measurable structure factors of dense dispersions
containing polydisperse, optically inhomogeneous particles",
arXiv:2404.03470 [cond-mat.soft]
Installation
mixscatter is available on the Python Package Index (PyPI).
Prerequisites
Ensure you have Python 3.10 or higher installed.
Using pip
Install the package via pip:
pip install mixscatter
The source code is currently hosted on GitHub at: https://github.com/joelmaier/mixscatter
Documentation
Find the documentation on GitHub Pages: https://joelmaier.github.io/mixscatter/
Example Showcase
This example demonstrates the fundamental capabilities of mixscatter. For a comprehensive
walk-through, refer to the
Getting Started Guide.
Run this code to
produce the figure below.
import numpy as np
import matplotlib.pyplot as plt
from mixscatter.mixture import Mixture
from mixscatter.scatteringmodel import SimpleCoreShell
from mixscatter.liquidstructure import PercusYevick
from mixscatter import (
measurable_intensity,
measurable_structure_factor,
measurable_diffusion_coefficient
)
if __name__ == "__main__":
plt.ion()
plt.close("all")
fig, ax = plt.subplots(3, 2, figsize=(6, 8), layout="constrained")
mixture = Mixture(radius=[100, 250], number_fraction=[0.4, 0.6])
ax[0, 0].stem(mixture.radius, mixture.number_fraction)
ax[0, 0].set_xlim(0, 300)
ax[0, 0].set_ylim(-0.05, 1.05)
ax[0, 0].set_xlabel("particle radius")
ax[0, 0].set_ylabel("number fraction")
wavevector = np.linspace(1e-3, 7e-2, 1000)
scattering_model = SimpleCoreShell(
wavevector=wavevector,
mixture=mixture,
core_to_total_ratio=0.5,
core_contrast=1.0,
shell_contrast=0.5
)
distance = np.linspace(0, 350, 1000)
for i, particle in enumerate(scattering_model.particles):
profile = particle.get_profile(distance)
ax[0, 1].plot(distance, profile, label=f"particle {i + 1}")
ax[0, 1].set_xlim(0, 400)
ax[0, 1].set_xlabel("distance from particle center")
ax[0, 1].set_ylabel("scattering contrast")
ax[0, 1].legend()
for i, form_factor in enumerate(scattering_model.single_form_factor):
ax[1, 0].plot(wavevector, form_factor, label=f"particle {i + 1}")
ax[1, 0].plot(
wavevector, scattering_model.average_form_factor, label="average"
)
ax[1, 0].set_yscale("log")
ax[1, 0].set_ylim(1e-6, 3e0)
ax[1, 0].legend()
ax[1, 0].set_xlabel("wavevector")
ax[1, 0].set_ylabel("form factor")
liquid_structure = PercusYevick(
wavevector=wavevector, mixture=mixture, volume_fraction_total=0.45
)
intensity = measurable_intensity(liquid_structure, scattering_model)
ax[1, 1].plot(wavevector, intensity)
ax[1, 1].set_yscale("log")
ax[1, 1].set_xlabel("wavevector")
ax[1, 1].set_ylabel("intensity")
structure_factor = measurable_structure_factor(
liquid_structure, scattering_model
)
ax[2, 0].plot(wavevector, structure_factor)
ax[2, 0].set_xlabel("wavevector")
ax[2, 0].set_ylabel("structure factor")
diffusion_coefficient = measurable_diffusion_coefficient(
scattering_model, thermal_energy=1.0, viscosity=1.0 / (6.0 * np.pi)
)
ax[2, 1].plot(wavevector, 1 / diffusion_coefficient)
ax[2, 1].set_xlabel("wavevector")
ax[2, 1].set_ylabel("apparent hydrodynamic radius")
fig.savefig("simple_example_figure.png", dpi=300)
Contributing
Contributions are welcome! If you find any bugs or want to request features,
feel free to get in touch or create an issue.
License
This project is licensed under the MIT License - see the LICENSE file for details.