Research
Security News
Malicious npm Packages Inject SSH Backdoors via Typosquatted Libraries
Socket’s threat research team has detected six malicious npm packages typosquatting popular libraries to insert SSH backdoors.
Mlxtend (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks.
Sebastian Raschka 2014-2024
To install mlxtend, just execute
pip install mlxtend
Alternatively, you could download the package manually from the Python Package Index https://pypi.python.org/pypi/mlxtend, unzip it, navigate into the package, and use the command:
python setup.py install
If you use conda, to install mlxtend just execute
conda install -c conda-forge mlxtend
The mlxtend version on PyPI may always be one step behind; you can install the latest development version from the GitHub repository by executing
pip install git+git://github.com/rasbt/mlxtend.git#egg=mlxtend
Or, you can fork the GitHub repository from https://github.com/rasbt/mlxtend and install mlxtend from your local drive via
python setup.py install
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import itertools
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from mlxtend.classifier import EnsembleVoteClassifier
from mlxtend.data import iris_data
from mlxtend.plotting import plot_decision_regions
# Initializing Classifiers
clf1 = LogisticRegression(random_state=0)
clf2 = RandomForestClassifier(random_state=0)
clf3 = SVC(random_state=0, probability=True)
eclf = EnsembleVoteClassifier(clfs=[clf1, clf2, clf3], weights=[2, 1, 1], voting='soft')
# Loading some example data
X, y = iris_data()
X = X[:,[0, 2]]
# Plotting Decision Regions
gs = gridspec.GridSpec(2, 2)
fig = plt.figure(figsize=(10, 8))
for clf, lab, grd in zip([clf1, clf2, clf3, eclf],
['Logistic Regression', 'Random Forest', 'RBF kernel SVM', 'Ensemble'],
itertools.product([0, 1], repeat=2)):
clf.fit(X, y)
ax = plt.subplot(gs[grd[0], grd[1]])
fig = plot_decision_regions(X=X, y=y, clf=clf, legend=2)
plt.title(lab)
plt.show()
If you use mlxtend as part of your workflow in a scientific publication, please consider citing the mlxtend repository with the following DOI:
@article{raschkas_2018_mlxtend,
author = {Sebastian Raschka},
title = {MLxtend: Providing machine learning and data science
utilities and extensions to Python’s
scientific computing stack},
journal = {The Journal of Open Source Software},
volume = {3},
number = {24},
month = apr,
year = 2018,
publisher = {The Open Journal},
doi = {10.21105/joss.00638},
url = {https://joss.theoj.org/papers/10.21105/joss.00638}
}
The best way to ask questions is via the GitHub Discussions channel. In case you encounter usage bugs, please don't hesitate to use the GitHub's issue tracker directly.
FAQs
Machine Learning Library Extensions
We found that mlxtend demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Research
Security News
Socket’s threat research team has detected six malicious npm packages typosquatting popular libraries to insert SSH backdoors.
Security News
MITRE's 2024 CWE Top 25 highlights critical software vulnerabilities like XSS, SQL Injection, and CSRF, reflecting shifts due to a refined ranking methodology.
Security News
In this segment of the Risky Business podcast, Feross Aboukhadijeh and Patrick Gray discuss the challenges of tracking malware discovered in open source softare.