Security News
PyPI’s New Archival Feature Closes a Major Security Gap
PyPI now allows maintainers to archive projects, improving security and helping users make informed decisions about their dependencies.
mozjpeg-lossless-optimization
Advanced tools
|Github| |Discord| |PYPI Version| |Build Status| |Black| |License|
This library optimizes JPEGs losslessly using MozJPEG_.
To reduce the file sizes,
The JPEGs optimized with this library are identical to what you get using the
jpegtran
tool from MozJPEG with the -optimize
, -progressive
and
-copy none
options.
.. _MozJPEG: https://github.com/mozilla/mozjpeg
Optimizing (losslessly) a JPEG:
.. code-block:: python
import mozjpeg_lossless_optimization
with open("./image.jpg", "rb") as input_jpeg_file: input_jpeg_bytes = input_jpeg_file.read()
output_jpeg_bytes = mozjpeg_lossless_optimization.optimize(input_jpeg_bytes)
with open("./out.jpg", "wb") as output_jpeg_file: output_jpeg_file.write(output_jpeg_bytes)
Converting an image to an optimized JPEG (using Pillow <https://pillow.readthedocs.io/>
_):
.. code-block:: python
from io import BytesIO
from PIL import Image # pip install pillow
import mozjpeg_lossless_optimization
def convert_to_optimized_jpeg(input_path, output_path):
jpeg_io = BytesIO()
with Image.open(input_path, "r") as image:
image.convert("RGB").save(jpeg_io, format="JPEG", quality=90)
jpeg_io.seek(0)
jpeg_bytes = jpeg_io.read()
optimized_jpeg_bytes = mozjpeg_lossless_optimization.optimize(jpeg_bytes)
with open(output_path, "wb") as output_file:
output_file.write(optimized_jpeg_bytes)
convert_to_optimized_jpeg("input.png", "optimized.jpg")
From PyPI
To install MozJPEG Lossless Optimization from PyPI, just run the following
command::
pip install mozjpeg-lossless-optimization
.. NOTE::
We provide precompiled packages for most common platforms. You may need to
install additional build dependencies if there is no precompiled package
available for your platform (see below).
From Sources
To install MozJPEG Lossless Optimization, MozJPEG will be compiled, so you will need a C compilator and cmake. On Debian / Ubuntu you can install everything you need with the following command::
sudo apt install build-essential cmake python3 python3-dev python3-pip python3-setuptools
Once everything installed, clone this repository::
git clone https://github.com/wanadev/mozjpeg-lossless-optimization.git
Then navigate to the project's folder::
cd mozjpeg-lossless-optimization
Retrieve submodules::
git submodule init
git submodule update
And finally build and install using the following command::
python3 setup.py install
Get the source and build C lib and module:
.. code-block:: sh
# Install system dependencies
sudo apt install build-essential cmake python3 python3-dev python3-pip python3-setuptools
# Get the sources
git clone https://github.com/wanadev/mozjpeg-lossless-optimization.git
cd mozjpeg-lossless-optimization
git submodule init
git submodule update
# Create and activate a Python virtualenv
python3 -m venv __env__
source __env__/bin/activate
# Install Python dependencies in the virtualenv
pip install cffi
# Build MozJPEG
# This will generate files in ./mozjpeg/build/ folder
python setup.py build
# Build the CFFI module "in-place"
# This will create the ./mozjpeg_lossless_optimization/_mozjpeg_opti.*.so file on Linux
python ./mozjpeg_lossless_optimization/mozjpeg_opti_build.py
Lint::
pip install nox
nox -s lint
Run tests::
pip install nox
pip -s test
MozJPEG Lossless Optimization is licensed under the BSD 3 Clause license.
See the LICENSE <https://github.com/wanadev/mozjpeg-lossless-optimization/blob/master/LICENSE>
_
file for more information.
MozJPEG is covered by three compatible BSD-style open source licenses. See
its license file <https://github.com/mozilla/mozjpeg/blob/master/LICENSE.md>
_
for more information.
[NEXT] (changes on master but not released yet):
v1.1.5:
v1.1.4:
v1.1.3:
v1.1.2:
v1.1.1:
v1.1.0:
v1.0.2:
arm64
and universal2
wheels for macOS on Apple Siliconx86
and x68_64
wheels for musl-based Linux distro (Alpine,...)v1.0.1: Python 3.10 support and wheels
v1.0.0: Handle JPEG decompression errors
v0.9.0: First public release
.. |Github| image:: https://img.shields.io/github/stars/wanadev/mozjpeg-lossless-optimization?label=Github&logo=github :target: https://github.com/wanadev/mozjpeg-lossless-optimization .. |Discord| image:: https://img.shields.io/badge/chat-Discord-8c9eff?logo=discord&logoColor=ffffff :target: https://discord.gg/BmUkEdMuFp .. |PYPI Version| image:: https://img.shields.io/pypi/v/mozjpeg-lossless-optimization.svg :target: https://pypi.python.org/pypi/mozjpeg-lossless-optimization .. |Build Status| image:: https://github.com/wanadev/mozjpeg-lossless-optimization/actions/workflows/python-ci.yml/badge.svg :target: https://github.com/wanadev/mozjpeg-lossless-optimization/actions .. |Black| image:: https://img.shields.io/badge/code%20style-black-000000.svg :target: https://black.readthedocs.io/en/stable/ .. |License| image:: https://img.shields.io/pypi/l/mozjpeg-lossless-optimization.svg :target: https://github.com/wanadev/mozjpeg-lossless-optimization/blob/master/LICENSE
FAQs
Optimize JPEGs losslessly using MozJPEG
We found that mozjpeg-lossless-optimization demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 2 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
PyPI now allows maintainers to archive projects, improving security and helping users make informed decisions about their dependencies.
Research
Security News
Malicious npm package postcss-optimizer delivers BeaverTail malware, targeting developer systems; similarities to past campaigns suggest a North Korean connection.
Security News
CISA's KEV data is now on GitHub, offering easier access, API integration, commit history tracking, and automated updates for security teams and researchers.