Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

newnewtulipy

Package Overview
Dependencies
Maintainers
2
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

newnewtulipy

Financial Technical Analysis Indicator Library. Python bindings for https://github.com/TulipCharts/tulipindicators

  • 0.4.6.5
  • PyPI
  • Socket score

Maintainers
2

This is a fork of newtulipy which is a fork of tulipy. Install with pip install newnewtulipy.

tulipy

Python bindings for Tulip Indicators

Tulipy requires numpy as all inputs and outputs are numpy arrays (dtype=np.float64).

Installation

You can install via pip install newtulipy. If a wheel is not available for your system, you will need to pip install Cython numpy to build from the source distribution. When building from source on Windows, you will need the Microsoft Visual C++ Build Tools installed.

Usage

import numpy as np
import tulipy as ti
ti.TI_VERSION
'0.8.4'
DATA = np.array([81.59, 81.06, 82.87, 83,    83.61,
                 83.15, 82.84, 83.99, 84.55, 84.36,
                 85.53, 86.54, 86.89, 87.77, 87.29])

Information about indicators are exposed as properties:

def print_info(indicator):
    print("Type:", indicator.type)
    print("Full Name:", indicator.full_name)
    print("Inputs:", indicator.inputs)
    print("Options:", indicator.options)
    print("Outputs:", indicator.outputs)
print_info(ti.sqrt)
Type: simple
Full Name: Vector Square Root
Inputs: ['real']
Options: []
Outputs: ['sqrt']

Single outputs are returned directly. Indicators returning multiple outputs use a tuple in the order indicated by the outputs property.

ti.sqrt(DATA)
array([ 9.03271831,  9.00333272,  9.10329611,  9.11043358,  9.14385039,
        9.11866218,  9.1016482 ,  9.16460583,  9.19510739,  9.18477   ,
        9.24824308,  9.30268778,  9.32148057,  9.36856446,  9.34291175])
print_info(ti.sma)
Type: overlay
Full Name: Simple Moving Average
Inputs: ['real']
Options: ['period']
Outputs: ['sma']
ti.sma(DATA, period=5)
array([ 82.426,  82.738,  83.094,  83.318,  83.628,  83.778,  84.254,
        84.994,  85.574,  86.218,  86.804])

Invalid options will throw an InvalidOptionError:

try:
    ti.sma(DATA, period=-5)
except ti.InvalidOptionError:
    print("Invalid Option!")
Invalid Option!
print_info(ti.bbands)
Type: overlay
Full Name: Bollinger Bands
Inputs: ['real']
Options: ['period', 'stddev']
Outputs: ['bbands_lower', 'bbands_middle', 'bbands_upper']
ti.bbands(DATA, period=5, stddev=2)
(array([ 80.53004219,  80.98714192,  82.53334324,  82.47198345,
         82.41775044,  82.43520292,  82.51133078,  83.14261781,
         83.53648779,  83.8703237 ,  85.28887096]),
 array([ 82.426,  82.738,  83.094,  83.318,  83.628,  83.778,  84.254,
         84.994,  85.574,  86.218,  86.804]),
 array([ 84.32195781,  84.48885808,  83.65465676,  84.16401655,
         84.83824956,  85.12079708,  85.99666922,  86.84538219,
         87.61151221,  88.5656763 ,  88.31912904]))

If inputs of differing sizes are provided, they are right-aligned and trimmed from the left:

DATA2 = np.array([83.15, 82.84, 83.99, 84.55, 84.36])
# 'high' trimmed to DATA[-5:] == array([ 85.53,  86.54,  86.89,  87.77,  87.29])
ti.aroonosc(high=DATA, low=DATA2, period=2)
array([  50.,  100.,   50.])

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc