nuPyProp
Propagate neutrinos through the earth.
A python package and command line utility, including fortran for
performance with openMP.
Documentation (WIP): https://nupyprop.readthedocs.io/en/latest/
Note: While the documentation is currently WIP, users and developers should consult the
nuPyProp tutorial folder called plotting_tutorial in the current repository, for visualizing output from the code and creating user-defined models.
Citation: Please cite "Neutrino propagation in the Earth and emerging charged leptons with nuPyProp", D. Garg, S.Patel et al. (NuSpaceSim Collaboration), e-Print: arXiv:2209.15581 [astro-ph.HE, hep-ph] <https://doi.org/10.48550/arXiv.2209.15581>
__, submitted for publication in Journal of Cosmology and Astroparticle Physics.
Acknowledgments: This work is supported by NASA grants 80NSSC19K0626 at the University of Maryland,Baltimore County, 80NSSC19K0460 at the Colorado School of Mines, 80NSSC19K0484 at theUniversity of Iowa, and 80NSSC19K0485 at the University of Utah, 80NSSC18K0464 at LehmanCollege, and under proposal 17-APRA17-0066 at NASA/GSFC and JPL.
Installation
with pip
::
python3 -m pip install nupyprop
with conda
We recommend installing nupyprop into a conda environment like so. In
this example the name of the environment is “nupyprop”
::
conda create -n nupyprop -c conda-forge -c nuspacesim nupyprop
conda activate nupyprop
Usage
nupyprop --help
Example for running tau propagation for 10\ :sup:7
GeV neutrinos at 10
degrees with 10\ :sup:7
neutrinos injected with stochastic energy loss &
with all other parameters as defaults:
nupyprop -e 7 -a 10 -t stochastic -s 1e7
Run parameters are defined in run.py. Different switches are
described as follows:
-
-e
or --energy
: incoming neutrino energy in log_10(GeV). Works for
single energy or multiple energies. For multiple energies, separate
energies with commas eg. 6,7,8,9,10,11. Default energies are
10\ :sup:6
,10\ :sup:6.25
,10\ :sup:6.5
,…10\ :sup:11
GeV.
-
-a
or --angle
: slant Earth angles in degrees. Works for single angle
or multiple angles. For multiple angles, separate angles with commas
eg. 1,3,5,7,10. Default angles are 1->42 degrees, in steps of 1
degree.
-
-i
or --idepth
: depth of ice/water in km. Default value is 4 km.
-
-cl
or --charged_lepton
: flavor of charged lepton used to propagate. Can be either
muon or tau. Default is tau.
-
-n
or --nu_type
: type of neutrino matter. Can be either neutrino or
anti-neutrino. Default is neutrino.
-
-t
or --energy_loss
: energy loss type for lepton - can be stochastic
or continuous. Default is stochastic.
-
-x
or --xc_model
: neutrino/anti-neutrino cross-section model used.
Can be from the pre-defined set of models (see xc-table_) or custom.
Default is ct18nlo.
-
-p
or --pn_model
: photonuclear interaction energy loss model used.
Can be from the pre-defined set of models (see pn-table_) or custom.
Default is allm.
-
-el
or --energy_lepton
: option to print exiting charged lepton's final energy in
output file.
Default is no
-
-f
or --fac_nu
: rescaling factor for BSM cross-sections. Default is 1.
-
-s
or --stats
: statistics or no. of injected neutrinos. Default is 1e7
neutrinos.
-
-htc
or --htc_mode
: High throughput computing mode. If set to yes,
the code will be optimized to run in high throughput computing mode.
Default is no.
Note: This program uses OpenMP for propagating the huge number of neutrinos injected.
For this purpose, the code will use all the threads available in your processor by default.
To control the number of threads used for running the code, use export OMP_NUM_THREADS=x
,
where x
is the number of threads you want the code to run with.
Viewing output results: output_.h5 will contain the results of the
code after it has finished running. In the terminal, run vitables
(optional dependency) and open the output_.h5 file to view the output
results.
output_*.h5 naming convention is as follows: output_A_B_Ckm_D_E_F_G,
where
| A = Neutrino type: nu is for neutrino & anu is for anti-neutrino.
| B = Charged lepton type: tau is for tau leptons & muon is for muons.
| C = idepth: depth of water layer (in km).
| D = Neutrino (or anti-neutrino) cross-section model.
| E = Charged lepton photonuclear energy loss model.
| F = Energy loss type: can be stochastic or continuous.
| G = Statistics (ie. no. of neutrinos/anti-neutrinos injected).
Model Tables
.. _xc-table:
+--------------------------------------------+--------------------------------------------------------------------------------------------------+
| Neutrino/Anti-Neutrino Cross-Section Model | Reference |
+============================================+==================================================================================================+
| Abramowicz, Levin, Levy, Maor (ALLM) | hep-ph/9712415 <https://arxiv.org/abs/hep-ph/9712415>
, |
| | Phys. Rev. D 96, 043003 <https://journals.aps.org/prd/abstract/10.1103/PhysRevD.96.043003>
|
+--------------------------------------------+--------------------------------------------------------------------------------------------------+
| Block, Durand, Ha, McKay (BDHM) | Phys. Rev. D 89, 094027 <https://journals.aps.org/prd/abstract/10.1103/PhysRevD.89.094027>
, |
| | Phys. Rev. D 96, 043003 <https://journals.aps.org/prd/abstract/10.1103/PhysRevD.96.043003>
|
+--------------------------------------------+--------------------------------------------------------------------------------------------------+
| CTEQ18-NLO | Phys. Rev. D 103, 014013 <https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.014013>
, |
| | Phys. Rev. D 81, 114012 <https://journals.aps.org/prd/abstract/10.1103/PhysRevD.81.114012>
|
+--------------------------------------------+--------------------------------------------------------------------------------------------------+
| Connolly, Thorne, Waters (CTW) | Phys. Rev. D 83, 113009 <https://journals.aps.org/prd/abstract/10.1103/PhysRevD.83.113009>
_ |
+--------------------------------------------+--------------------------------------------------------------------------------------------------+
| nCTEQ15 | Phys. Rev. D 93, 085037 <https://journals.aps.org/prd/abstract/10.1103/PhysRevD.93.085037>
, |
| | Phys. Rev. D 81, 114012 <https://journals.aps.org/prd/abstract/10.1103/PhysRevD.81.114012>
|
+--------------------------------------------+--------------------------------------------------------------------------------------------------+
| User Defined | See nuPyProp tutorial repository <https://research-git.uiowa.edu/spatel31/nupyprop_tutorial>
__ |
+--------------------------------------------+--------------------------------------------------------------------------------------------------+
.. _pn-table:
+-----------------------------------------------+-------------------------------------------------------------------------------------------------+
| Charged Lepton Photonuclear Energy Loss Model | Reference |
+===============================================+=================================================================================================+
| Abramowicz, Levin, Levy, Maor (ALLM) | hep-ph/9712415 <https://arxiv.org/abs/hep-ph/9712415>
, |
| | Phys. Rev. D 63, 094020 <https://journals.aps.org/prd/abstract/10.1103/PhysRevD.63.094020>
|
+-----------------------------------------------+-------------------------------------------------------------------------------------------------+
| Bezrukov-Bugaev (BB) | Yad. Fiz. 33, 1195 <https://inspirehep.net/literature/170124>
, |
| | Phys. Rev. D 63, 094020 <https://journals.aps.org/prd/abstract/10.1103/PhysRevD.63.094020>
|
+-----------------------------------------------+-------------------------------------------------------------------------------------------------+
| Block, Durand, Ha, McKay (BDHM) | Phys. Rev. D 89, 094027 <https://journals.aps.org/prd/abstract/10.1103/PhysRevD.89.094027>
, |
| | Phys. Rev. D 63, 094020 <https://journals.aps.org/prd/abstract/10.1103/PhysRevD.63.094020>
|
+-----------------------------------------------+-------------------------------------------------------------------------------------------------+
| Capella, Kaidalov, Merino, Tran (CKMT) | Eur. Phys. J. C 10, 153 <https://arxiv.org/abs/hep-ph/9806367>
_ |
| | Phys. Rev. D 63, 094020 <https://journals.aps.org/prd/abstract/10.1103/PhysRevD.63.094020>
_ |
+-----------------------------------------------+-------------------------------------------------------------------------------------------------+
| User Defined | See nuPyProp tutorial repository <https://research-git.uiowa.edu/spatel31/nupyprop_tutorial>
__|
+-----------------------------------------------+-------------------------------------------------------------------------------------------------+
Code Execution Timing Tables
.. _tau-table:
============== ================ ==================== ====== =================== ===============
Charged Lepton Energy Loss Type E\ :sub:|nu|
[GeV] Angles N\ :sub:|nu|;;in
Time (hrs)
============== ================ ==================== ====== =================== ===============
|tau| Stochastic 10\ :sup:7
1-35 10\ :sup:8
1.07*, 0.26***
|tau| Continuous 10\ :sup:7
1-35 10\ :sup:8
0.88*
|tau| Stochastic 10\ :sup:8
1-35 10\ :sup:8
6.18*, 1.53***
|tau| Continuous 10\ :sup:8
1-35 10\ :sup:8
5.51*
|tau| Stochastic 10\ :sup:9
1-35 10\ :sup:8
27.96*, 5.08***
|tau| Continuous 10\ :sup:9
1-35 10\ :sup:8
19.11*
|tau| Stochastic 10\ :sup:10
1-35 10\ :sup:8
49.80*, 12.43***
|tau| Continuous 10\ :sup:10
1-35 10\ :sup:8
35.59*
|tau| Stochastic 10\ :sup:11
1-35 10\ :sup:8
12.73***
|tau| Continuous 10\ :sup:11
1-35 10\ :sup:8
-
============== ================ ==================== ====== =================== ===============
.. _mu-table:
============== ================ ==================== ================================= ================== ==========
Charged Lepton Energy Loss Type E\ :sub:|nu|
[GeV] Angles N\ :sub:|nu|;;in
Time (hrs)
============== ================ ==================== ================================= ================== ==========
|mu| Stochastic 10\ :sup:6
1,2,3,5,7,10,12,15,17,20,25,30,35 10\ :sup:8
-
|mu| Continuous 10\ :sup:6
1,2,3,5,7,10,12,15,17,20,25,30,35 10\ :sup:8
0.95*
|mu| Stochastic 10\ :sup:7
1,2,3,5,7,10,12,15,17,20,25,30,35 10\ :sup:8
-
|mu| Continuous 10\ :sup:7
1,2,3,5,7,10,12,15,17,20,25,30,35 10\ :sup:8
3.19*
|mu| Stochastic 10\ :sup:8
1,2,3,5,7,10,12,15,17,20,25,30,35 10\ :sup:8
-
|mu| Continuous 10\ :sup:8
1,2,3,5,7,10,12,15,17,20,25,30,35 10\ :sup:8
5.17*
|mu| Stochastic 10\ :sup:9
1,2,3,5,7,10,12,15,17,20,25,30,35 10\ :sup:8
111.77**
|mu| Continuous 10\ :sup:9
1,2,3,5,7,10,12,15,17,20,25,30,35 10\ :sup:8
7.42*
|mu| Stochastic 10\ :sup:10
1,2,3,5,7,10,12,15,17,20,25,30,35 10\ :sup:8
98.17*
|mu| Continuous 10\ :sup:10
1,2,3,5,7,10,12,15,17,20,25,30,35 10\ :sup:8
9.76*
|mu| Stochastic 10\ :sup:11
1,2,3,5,7,10,12,15,17,20,25,30,35 10\ :sup:8
-
|mu| Continuous 10\ :sup:11
1,2,3,5,7,10,12,15,17,20,25,30,35 10\ :sup:8
-
============== ================ ==================== ================================= ================== ==========
* - Intel Core i7-8750H; 6 cores & 12 threads. ** - Intel Core
i5-10210; 4 cores & 8 threads. *** - UIowa Argon cluster; 56 cores.
For debugging/development: The correct order to look at the code is
in the following order:
- data.py: contains functions for reading/writing from/to hdf5 files.
- geometry.py: contains the Earth geometry modules (including
PREM) for use with python/fortran.
- models.py: contains neutrino cross-section & charged lepton energy loss model templates.
- propagate.f90: heart of the code; contains fortran modules to
interpolate between geometry variables, cross-sections, energy loss
parameters & propagate neutrinos and charged leptons through the Earth.
- main.py: forms the main skeleton of the code; propagates the
neutrinos and charged leptons, and calculates the p_exit and collects
outgoing lepton energies.
- run.py: contains all the run parameters and variables needed for
all the other .py files.
Developing the code on Ubuntu
These notes should help developers of this code build and install the
package locally using a pep518 compliant build system (pip).
- Install the non-pypi required dependencies as described for users
above.
- Install a fortran compiler. ex:
sudo apt-get install gfortran
- git clone the source code:
git clone git@github.com:NuSpaceSim/nupyprop.git
cd nupyprop
- build and install the package in ‘editable’ mode
python3 -m pip install -e .
Developing the code on MacOS
These notes should help developers of this code build and install the
package locally using a pep518 compliant build system (pip). Currently
we do not support the default system python3 on MacOS which is out of
date and missing critical functionality. Use the homebrew python
instead, or a virtualenv
, or a conda environment.
- Install the non-pypi required dependencies as described for users
above.
- Install a fortran compiler. ex:
brew install gcc
- git clone the source code:
git clone git@github.com:NuSpaceSim/nupyprop.git
cd nupyprop
- build and install the package in ‘editable’ mode
python3 -m pip install -e .
.. This data file has been placed in the public domain.
.. Derived from the Unicode character mappings available from
http://www.w3.org/2003/entities/xml/.
Processed by unicode2rstsubs.py, part of Docutils:
http://docutils.sourceforge.net.
.. |alpha| unicode:: U+003B1 .. GREEK SMALL LETTER ALPHA
.. |beta| unicode:: U+003B2 .. GREEK SMALL LETTER BETA
.. |chi| unicode:: U+003C7 .. GREEK SMALL LETTER CHI
.. |Delta| unicode:: U+00394 .. GREEK CAPITAL LETTER DELTA
.. |delta| unicode:: U+003B4 .. GREEK SMALL LETTER DELTA
.. |epsi| unicode:: U+003F5 .. GREEK LUNATE EPSILON SYMBOL
.. |epsis| unicode:: U+003F5 .. GREEK LUNATE EPSILON SYMBOL
.. |epsiv| unicode:: U+003B5 .. GREEK SMALL LETTER EPSILON
.. |eta| unicode:: U+003B7 .. GREEK SMALL LETTER ETA
.. |Gamma| unicode:: U+00393 .. GREEK CAPITAL LETTER GAMMA
.. |gamma| unicode:: U+003B3 .. GREEK SMALL LETTER GAMMA
.. |Gammad| unicode:: U+003DC .. GREEK LETTER DIGAMMA
.. |gammad| unicode:: U+003DD .. GREEK SMALL LETTER DIGAMMA
.. |iota| unicode:: U+003B9 .. GREEK SMALL LETTER IOTA
.. |kappa| unicode:: U+003BA .. GREEK SMALL LETTER KAPPA
.. |kappav| unicode:: U+003F0 .. GREEK KAPPA SYMBOL
.. |Lambda| unicode:: U+0039B .. GREEK CAPITAL LETTER LAMDA
.. |lambda| unicode:: U+003BB .. GREEK SMALL LETTER LAMDA
.. |mu| unicode:: U+003BC .. GREEK SMALL LETTER MU
.. |nu| unicode:: U+003BD .. GREEK SMALL LETTER NU
.. |Omega| unicode:: U+003A9 .. GREEK CAPITAL LETTER OMEGA
.. |omega| unicode:: U+003C9 .. GREEK SMALL LETTER OMEGA
.. |Phi| unicode:: U+003A6 .. GREEK CAPITAL LETTER PHI
.. |phi| unicode:: U+003D5 .. GREEK PHI SYMBOL
.. |phis| unicode:: U+003D5 .. GREEK PHI SYMBOL
.. |phiv| unicode:: U+003C6 .. GREEK SMALL LETTER PHI
.. |Pi| unicode:: U+003A0 .. GREEK CAPITAL LETTER PI
.. |pi| unicode:: U+003C0 .. GREEK SMALL LETTER PI
.. |piv| unicode:: U+003D6 .. GREEK PI SYMBOL
.. |Psi| unicode:: U+003A8 .. GREEK CAPITAL LETTER PSI
.. |psi| unicode:: U+003C8 .. GREEK SMALL LETTER PSI
.. |rho| unicode:: U+003C1 .. GREEK SMALL LETTER RHO
.. |rhov| unicode:: U+003F1 .. GREEK RHO SYMBOL
.. |Sigma| unicode:: U+003A3 .. GREEK CAPITAL LETTER SIGMA
.. |sigma| unicode:: U+003C3 .. GREEK SMALL LETTER SIGMA
.. |sigmav| unicode:: U+003C2 .. GREEK SMALL LETTER FINAL SIGMA
.. |tau| unicode:: U+003C4 .. GREEK SMALL LETTER TAU
.. |Theta| unicode:: U+00398 .. GREEK CAPITAL LETTER THETA
.. |theta| unicode:: U+003B8 .. GREEK SMALL LETTER THETA
.. |thetas| unicode:: U+003B8 .. GREEK SMALL LETTER THETA
.. |thetav| unicode:: U+003D1 .. GREEK THETA SYMBOL
.. |Upsi| unicode:: U+003D2 .. GREEK UPSILON WITH HOOK SYMBOL
.. |upsi| unicode:: U+003C5 .. GREEK SMALL LETTER UPSILON
.. |Xi| unicode:: U+0039E .. GREEK CAPITAL LETTER XI
.. |xi| unicode:: U+003BE .. GREEK SMALL LETTER XI
.. |zeta| unicode:: U+003B6 .. GREEK SMALL LETTER ZETA