Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

nupyprop

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

nupyprop

A simulator for neutrino propagation through the earth.

  • 1.0.1
  • PyPI
  • Socket score

Maintainers
1

nuPyProp

Propagate neutrinos through the earth.

A python package and command line utility, including fortran for performance with openMP.

Documentation (WIP): https://nupyprop.readthedocs.io/en/latest/

Note: While the documentation is currently WIP, users and developers should consult the nuPyProp tutorial folder called plotting_tutorial in the current repository, for visualizing output from the code and creating user-defined models.

Citation: Please cite "Neutrino propagation in the Earth and emerging charged leptons with nuPyProp", D. Garg, S.Patel et al. (NuSpaceSim Collaboration), e-Print: arXiv:2209.15581 [astro-ph.HE, hep-ph] <https://doi.org/10.48550/arXiv.2209.15581>__, submitted for publication in Journal of Cosmology and Astroparticle Physics.

Acknowledgments: This work is supported by NASA grants 80NSSC19K0626 at the University of Maryland,Baltimore County, 80NSSC19K0460 at the Colorado School of Mines, 80NSSC19K0484 at theUniversity of Iowa, and 80NSSC19K0485 at the University of Utah, 80NSSC18K0464 at LehmanCollege, and under proposal 17-APRA17-0066 at NASA/GSFC and JPL.

Installation

with pip


::

   python3 -m pip install nupyprop

with conda

We recommend installing nupyprop into a conda environment like so. In this example the name of the environment is “nupyprop”

::

conda create -n nupyprop -c conda-forge -c nuspacesim nupyprop conda activate nupyprop

Usage

nupyprop --help

Example for running tau propagation for 10\ :sup:7 GeV neutrinos at 10 degrees with 10\ :sup:7 neutrinos injected with stochastic energy loss & with all other parameters as defaults:

nupyprop -e 7 -a 10 -t stochastic -s 1e7

Run parameters are defined in run.py. Different switches are described as follows:

  1. -e or --energy: incoming neutrino energy in log_10(GeV). Works for single energy or multiple energies. For multiple energies, separate energies with commas eg. 6,7,8,9,10,11. Default energies are 10\ :sup:6,10\ :sup:6.25,10\ :sup:6.5,…10\ :sup:11 GeV.

  2. -a or --angle: slant Earth angles in degrees. Works for single angle or multiple angles. For multiple angles, separate angles with commas eg. 1,3,5,7,10. Default angles are 1->42 degrees, in steps of 1 degree.

  3. -i or --idepth: depth of ice/water in km. Default value is 4 km.

  4. -cl or --charged_lepton: flavor of charged lepton used to propagate. Can be either muon or tau. Default is tau.

  5. -n or --nu_type: type of neutrino matter. Can be either neutrino or anti-neutrino. Default is neutrino.

  6. -t or --energy_loss: energy loss type for lepton - can be stochastic or continuous. Default is stochastic.

  7. -x or --xc_model: neutrino/anti-neutrino cross-section model used. Can be from the pre-defined set of models (see xc-table_) or custom. Default is ct18nlo.

  8. -p or --pn_model: photonuclear interaction energy loss model used. Can be from the pre-defined set of models (see pn-table_) or custom. Default is allm.

  9. -el or --energy_lepton: option to print exiting charged lepton's final energy in output file. Default is no

  10. -f or --fac_nu: rescaling factor for BSM cross-sections. Default is 1.

  11. -s or --stats: statistics or no. of injected neutrinos. Default is 1e7 neutrinos.

  12. -htc or --htc_mode: High throughput computing mode. If set to yes, the code will be optimized to run in high throughput computing mode. Default is no.

Note: This program uses OpenMP for propagating the huge number of neutrinos injected. For this purpose, the code will use all the threads available in your processor by default. To control the number of threads used for running the code, use export OMP_NUM_THREADS=x, where x is the number of threads you want the code to run with.

Viewing output results: output_.h5 will contain the results of the code after it has finished running. In the terminal, run vitables (optional dependency) and open the output_.h5 file to view the output results.

output_*.h5 naming convention is as follows: output_A_B_Ckm_D_E_F_G, where

| A = Neutrino type: nu is for neutrino & anu is for anti-neutrino. | B = Charged lepton type: tau is for tau leptons & muon is for muons. | C = idepth: depth of water layer (in km). | D = Neutrino (or anti-neutrino) cross-section model. | E = Charged lepton photonuclear energy loss model. | F = Energy loss type: can be stochastic or continuous. | G = Statistics (ie. no. of neutrinos/anti-neutrinos injected).

Model Tables

.. _xc-table:

+--------------------------------------------+--------------------------------------------------------------------------------------------------+ | Neutrino/Anti-Neutrino Cross-Section Model | Reference | +============================================+==================================================================================================+ | Abramowicz, Levin, Levy, Maor (ALLM) | hep-ph/9712415 <https://arxiv.org/abs/hep-ph/9712415>, | | | Phys. Rev. D 96, 043003 <https://journals.aps.org/prd/abstract/10.1103/PhysRevD.96.043003> | +--------------------------------------------+--------------------------------------------------------------------------------------------------+ | Block, Durand, Ha, McKay (BDHM) | Phys. Rev. D 89, 094027 <https://journals.aps.org/prd/abstract/10.1103/PhysRevD.89.094027>, | | | Phys. Rev. D 96, 043003 <https://journals.aps.org/prd/abstract/10.1103/PhysRevD.96.043003> | +--------------------------------------------+--------------------------------------------------------------------------------------------------+ | CTEQ18-NLO | Phys. Rev. D 103, 014013 <https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.014013>, | | | Phys. Rev. D 81, 114012 <https://journals.aps.org/prd/abstract/10.1103/PhysRevD.81.114012> | +--------------------------------------------+--------------------------------------------------------------------------------------------------+ | Connolly, Thorne, Waters (CTW) | Phys. Rev. D 83, 113009 <https://journals.aps.org/prd/abstract/10.1103/PhysRevD.83.113009>_ | +--------------------------------------------+--------------------------------------------------------------------------------------------------+ | nCTEQ15 | Phys. Rev. D 93, 085037 <https://journals.aps.org/prd/abstract/10.1103/PhysRevD.93.085037>, | | | Phys. Rev. D 81, 114012 <https://journals.aps.org/prd/abstract/10.1103/PhysRevD.81.114012> | +--------------------------------------------+--------------------------------------------------------------------------------------------------+ | User Defined | See nuPyProp tutorial repository <https://research-git.uiowa.edu/spatel31/nupyprop_tutorial>__ | +--------------------------------------------+--------------------------------------------------------------------------------------------------+

.. _pn-table:

+-----------------------------------------------+-------------------------------------------------------------------------------------------------+ | Charged Lepton Photonuclear Energy Loss Model | Reference | +===============================================+=================================================================================================+ | Abramowicz, Levin, Levy, Maor (ALLM) | hep-ph/9712415 <https://arxiv.org/abs/hep-ph/9712415>, | | | Phys. Rev. D 63, 094020 <https://journals.aps.org/prd/abstract/10.1103/PhysRevD.63.094020> | +-----------------------------------------------+-------------------------------------------------------------------------------------------------+ | Bezrukov-Bugaev (BB) | Yad. Fiz. 33, 1195 <https://inspirehep.net/literature/170124>, | | | Phys. Rev. D 63, 094020 <https://journals.aps.org/prd/abstract/10.1103/PhysRevD.63.094020> | +-----------------------------------------------+-------------------------------------------------------------------------------------------------+ | Block, Durand, Ha, McKay (BDHM) | Phys. Rev. D 89, 094027 <https://journals.aps.org/prd/abstract/10.1103/PhysRevD.89.094027>, | | | Phys. Rev. D 63, 094020 <https://journals.aps.org/prd/abstract/10.1103/PhysRevD.63.094020> | +-----------------------------------------------+-------------------------------------------------------------------------------------------------+ | Capella, Kaidalov, Merino, Tran (CKMT) | Eur. Phys. J. C 10, 153 <https://arxiv.org/abs/hep-ph/9806367>_ | | | Phys. Rev. D 63, 094020 <https://journals.aps.org/prd/abstract/10.1103/PhysRevD.63.094020>_ | +-----------------------------------------------+-------------------------------------------------------------------------------------------------+ | User Defined | See nuPyProp tutorial repository <https://research-git.uiowa.edu/spatel31/nupyprop_tutorial>__| +-----------------------------------------------+-------------------------------------------------------------------------------------------------+

Code Execution Timing Tables

.. _tau-table:

============== ================ ==================== ====== =================== =============== Charged Lepton Energy Loss Type E\ :sub:|nu| [GeV] Angles N\ :sub:|nu|;;in Time (hrs) ============== ================ ==================== ====== =================== =============== |tau| Stochastic 10\ :sup:7 1-35 10\ :sup:8 1.07*, 0.26***
|tau| Continuous 10\ :sup:7 1-35 10\ :sup:8 0.88*
|tau| Stochastic 10\ :sup:8 1-35 10\ :sup:8 6.18*, 1.53***
|tau| Continuous 10\ :sup:8 1-35 10\ :sup:8 5.51*
|tau| Stochastic 10\ :sup:9 1-35 10\ :sup:8 27.96*, 5.08*** |tau| Continuous 10\ :sup:9 1-35 10\ :sup:8 19.11*
|tau| Stochastic 10\ :sup:10 1-35 10\ :sup:8 49.80*, 12.43*** |tau| Continuous 10\ :sup:10 1-35 10\ :sup:8 35.59*
|tau| Stochastic 10\ :sup:11 1-35 10\ :sup:8 12.73***
|tau| Continuous 10\ :sup:11 1-35 10\ :sup:8 -
============== ================ ==================== ====== =================== ===============

.. _mu-table:

============== ================ ==================== ================================= ================== ========== Charged Lepton Energy Loss Type E\ :sub:|nu| [GeV] Angles N\ :sub:|nu|;;in Time (hrs) ============== ================ ==================== ================================= ================== ========== |mu| Stochastic 10\ :sup:6 1,2,3,5,7,10,12,15,17,20,25,30,35 10\ :sup:8 -
|mu| Continuous 10\ :sup:6 1,2,3,5,7,10,12,15,17,20,25,30,35 10\ :sup:8 0.95*
|mu| Stochastic 10\ :sup:7 1,2,3,5,7,10,12,15,17,20,25,30,35 10\ :sup:8 -
|mu| Continuous 10\ :sup:7 1,2,3,5,7,10,12,15,17,20,25,30,35 10\ :sup:8 3.19*
|mu| Stochastic 10\ :sup:8 1,2,3,5,7,10,12,15,17,20,25,30,35 10\ :sup:8 -
|mu| Continuous 10\ :sup:8 1,2,3,5,7,10,12,15,17,20,25,30,35 10\ :sup:8 5.17*
|mu| Stochastic 10\ :sup:9 1,2,3,5,7,10,12,15,17,20,25,30,35 10\ :sup:8 111.77** |mu| Continuous 10\ :sup:9 1,2,3,5,7,10,12,15,17,20,25,30,35 10\ :sup:8 7.42*
|mu| Stochastic 10\ :sup:10 1,2,3,5,7,10,12,15,17,20,25,30,35 10\ :sup:8 98.17*
|mu| Continuous 10\ :sup:10 1,2,3,5,7,10,12,15,17,20,25,30,35 10\ :sup:8 9.76*
|mu| Stochastic 10\ :sup:11 1,2,3,5,7,10,12,15,17,20,25,30,35 10\ :sup:8 -
|mu| Continuous 10\ :sup:11 1,2,3,5,7,10,12,15,17,20,25,30,35 10\ :sup:8 -
============== ================ ==================== ================================= ================== ==========

* - Intel Core i7-8750H; 6 cores & 12 threads. ** - Intel Core i5-10210; 4 cores & 8 threads. *** - UIowa Argon cluster; 56 cores.

For debugging/development: The correct order to look at the code is in the following order:

  1. data.py: contains functions for reading/writing from/to hdf5 files.
  2. geometry.py: contains the Earth geometry modules (including PREM) for use with python/fortran.
  3. models.py: contains neutrino cross-section & charged lepton energy loss model templates.
  4. propagate.f90: heart of the code; contains fortran modules to interpolate between geometry variables, cross-sections, energy loss parameters & propagate neutrinos and charged leptons through the Earth.
  5. main.py: forms the main skeleton of the code; propagates the neutrinos and charged leptons, and calculates the p_exit and collects outgoing lepton energies.
  6. run.py: contains all the run parameters and variables needed for all the other .py files.

Developing the code on Ubuntu

These notes should help developers of this code build and install the package locally using a pep518 compliant build system (pip).

  1. Install the non-pypi required dependencies as described for users above.
  2. Install a fortran compiler. ex: sudo apt-get install gfortran
  3. git clone the source code: git clone git@github.com:NuSpaceSim/nupyprop.git
  4. cd nupyprop
  5. build and install the package in ‘editable’ mode python3 -m pip install -e .

Developing the code on MacOS

These notes should help developers of this code build and install the package locally using a pep518 compliant build system (pip). Currently we do not support the default system python3 on MacOS which is out of date and missing critical functionality. Use the homebrew python instead, or a virtualenv, or a conda environment.

  1. Install the non-pypi required dependencies as described for users above.
  2. Install a fortran compiler. ex: brew install gcc
  3. git clone the source code: git clone git@github.com:NuSpaceSim/nupyprop.git
  4. cd nupyprop
  5. build and install the package in ‘editable’ mode python3 -m pip install -e .

.. This data file has been placed in the public domain. .. Derived from the Unicode character mappings available from http://www.w3.org/2003/entities/xml/. Processed by unicode2rstsubs.py, part of Docutils: http://docutils.sourceforge.net.

.. |alpha| unicode:: U+003B1 .. GREEK SMALL LETTER ALPHA .. |beta| unicode:: U+003B2 .. GREEK SMALL LETTER BETA .. |chi| unicode:: U+003C7 .. GREEK SMALL LETTER CHI .. |Delta| unicode:: U+00394 .. GREEK CAPITAL LETTER DELTA .. |delta| unicode:: U+003B4 .. GREEK SMALL LETTER DELTA .. |epsi| unicode:: U+003F5 .. GREEK LUNATE EPSILON SYMBOL .. |epsis| unicode:: U+003F5 .. GREEK LUNATE EPSILON SYMBOL .. |epsiv| unicode:: U+003B5 .. GREEK SMALL LETTER EPSILON .. |eta| unicode:: U+003B7 .. GREEK SMALL LETTER ETA .. |Gamma| unicode:: U+00393 .. GREEK CAPITAL LETTER GAMMA .. |gamma| unicode:: U+003B3 .. GREEK SMALL LETTER GAMMA .. |Gammad| unicode:: U+003DC .. GREEK LETTER DIGAMMA .. |gammad| unicode:: U+003DD .. GREEK SMALL LETTER DIGAMMA .. |iota| unicode:: U+003B9 .. GREEK SMALL LETTER IOTA .. |kappa| unicode:: U+003BA .. GREEK SMALL LETTER KAPPA .. |kappav| unicode:: U+003F0 .. GREEK KAPPA SYMBOL .. |Lambda| unicode:: U+0039B .. GREEK CAPITAL LETTER LAMDA .. |lambda| unicode:: U+003BB .. GREEK SMALL LETTER LAMDA .. |mu| unicode:: U+003BC .. GREEK SMALL LETTER MU .. |nu| unicode:: U+003BD .. GREEK SMALL LETTER NU .. |Omega| unicode:: U+003A9 .. GREEK CAPITAL LETTER OMEGA .. |omega| unicode:: U+003C9 .. GREEK SMALL LETTER OMEGA .. |Phi| unicode:: U+003A6 .. GREEK CAPITAL LETTER PHI .. |phi| unicode:: U+003D5 .. GREEK PHI SYMBOL .. |phis| unicode:: U+003D5 .. GREEK PHI SYMBOL .. |phiv| unicode:: U+003C6 .. GREEK SMALL LETTER PHI .. |Pi| unicode:: U+003A0 .. GREEK CAPITAL LETTER PI .. |pi| unicode:: U+003C0 .. GREEK SMALL LETTER PI .. |piv| unicode:: U+003D6 .. GREEK PI SYMBOL .. |Psi| unicode:: U+003A8 .. GREEK CAPITAL LETTER PSI .. |psi| unicode:: U+003C8 .. GREEK SMALL LETTER PSI .. |rho| unicode:: U+003C1 .. GREEK SMALL LETTER RHO .. |rhov| unicode:: U+003F1 .. GREEK RHO SYMBOL .. |Sigma| unicode:: U+003A3 .. GREEK CAPITAL LETTER SIGMA .. |sigma| unicode:: U+003C3 .. GREEK SMALL LETTER SIGMA .. |sigmav| unicode:: U+003C2 .. GREEK SMALL LETTER FINAL SIGMA .. |tau| unicode:: U+003C4 .. GREEK SMALL LETTER TAU .. |Theta| unicode:: U+00398 .. GREEK CAPITAL LETTER THETA .. |theta| unicode:: U+003B8 .. GREEK SMALL LETTER THETA .. |thetas| unicode:: U+003B8 .. GREEK SMALL LETTER THETA .. |thetav| unicode:: U+003D1 .. GREEK THETA SYMBOL .. |Upsi| unicode:: U+003D2 .. GREEK UPSILON WITH HOOK SYMBOL .. |upsi| unicode:: U+003C5 .. GREEK SMALL LETTER UPSILON .. |Xi| unicode:: U+0039E .. GREEK CAPITAL LETTER XI .. |xi| unicode:: U+003BE .. GREEK SMALL LETTER XI .. |zeta| unicode:: U+003B6 .. GREEK SMALL LETTER ZETA

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc