Security News
Fluent Assertions Faces Backlash After Abandoning Open Source Licensing
Fluent Assertions is facing backlash after dropping the Apache license for a commercial model, leaving users blindsided and questioning contributor rights.
Onnx Text Recognition (OnnxTR): docTR Onnx-Wrapper for high-performance OCR on documents.
:warning: Please note that this is a wrapper around the doctr library to provide a Onnx pipeline for docTR. For feature requests, which are not directly related to the Onnx pipeline, please refer to the base project.
Optical Character Recognition made seamless & accessible to anyone, powered by Onnx
What you can expect from this repository:
Python 3.10 (or higher) and pip are required to install OnnxTR.
You can then install the latest release of the package using pypi as follows:
NOTE:
Currently supported execution providers by default are: CPU, CUDA (NVIDIA GPU), OpenVINO (Intel CPU | GPU).
For GPU support please take a look at: ONNX Runtime.
# standard cpu support
pip install "onnxtr[cpu]"
pip install "onnxtr[cpu-headless]" # same as cpu but with opencv-headless
# with gpu support
pip install "onnxtr[gpu]"
pip install "onnxtr[gpu-headless]" # same as gpu but with opencv-headless
# OpenVINO cpu | gpu support for Intel CPUs | GPUs
pip install "onnxtr[openvino]"
pip install "onnxtr[openvino-headless]" # same as openvino but with opencv-headless
# with HTML support
pip install "onnxtr[html]"
# with support for visualization
pip install "onnxtr[viz]"
# with support for all dependencies
pip install "onnxtr[html, gpu, viz]"
Recommendation:
If you have:
gpu
variantsopenvino
variantscpu
variantsOpenVINO:
By default OnnxTR running with the OpenVINO execution provider backend uses the CPU
device with FP32
precision, to change the device or for further configuaration please refer to the ONNX Runtime OpenVINO documentation.
Documents can be interpreted from PDF / Images / Webpages / Multiple page images using the following code snippet:
from onnxtr.io import DocumentFile
# PDF
pdf_doc = DocumentFile.from_pdf("path/to/your/doc.pdf")
# Image
single_img_doc = DocumentFile.from_images("path/to/your/img.jpg")
# Webpage (requires `weasyprint` to be installed)
webpage_doc = DocumentFile.from_url("https://www.yoursite.com")
# Multiple page images
multi_img_doc = DocumentFile.from_images(["path/to/page1.jpg", "path/to/page2.jpg"])
Let's use the default ocr_predictor
model for an example:
from onnxtr.io import DocumentFile
from onnxtr.models import ocr_predictor, EngineConfig
model = ocr_predictor(
det_arch='fast_base', # detection architecture
reco_arch='vitstr_base', # recognition architecture
det_bs=2, # detection batch size
reco_bs=512, # recognition batch size
# Document related parameters
assume_straight_pages=True, # set to `False` if the pages are not straight (rotation, perspective, etc.) (default: True)
straighten_pages=False, # set to `True` if the pages should be straightened before final processing (default: False)
export_as_straight_boxes=False, # set to `True` if the boxes should be exported as if the pages were straight (default: False)
# Preprocessing related parameters
preserve_aspect_ratio=True, # set to `False` if the aspect ratio should not be preserved (default: True)
symmetric_pad=True, # set to `False` to disable symmetric padding (default: True)
# Additional parameters - meta information
detect_orientation=False, # set to `True` if the orientation of the pages should be detected (default: False)
detect_language=False, # set to `True` if the language of the pages should be detected (default: False)
# Orientation specific parameters in combination with `assume_straight_pages=False` and/or `straighten_pages=True`
disable_crop_orientation=False, # set to `True` if the crop orientation classification should be disabled (default: False)
disable_page_orientation=False, # set to `True` if the general page orientation classification should be disabled (default: False)
# DocumentBuilder specific parameters
resolve_lines=True, # whether words should be automatically grouped into lines (default: True)
resolve_blocks=False, # whether lines should be automatically grouped into blocks (default: False)
paragraph_break=0.035, # relative length of the minimum space separating paragraphs (default: 0.035)
# OnnxTR specific parameters
# NOTE: 8-Bit quantized models are not available for FAST detection models and can in general lead to poorer accuracy
load_in_8_bit=False, # set to `True` to load 8-bit quantized models instead of the full precision onces (default: False)
# Advanced engine configuration options
det_engine_cfg=EngineConfig(), # detection model engine configuration (default: internal predefined configuration)
reco_engine_cfg=EngineConfig(), # recognition model engine configuration (default: internal predefined configuration)
clf_engine_cfg=EngineConfig(), # classification (orientation) model engine configuration (default: internal predefined configuration)
)
# PDF
doc = DocumentFile.from_pdf("path/to/your/doc.pdf")
# Analyze
result = model(doc)
# Display the result (requires matplotlib & mplcursors to be installed)
result.show()
Or even rebuild the original document from its predictions:
import matplotlib.pyplot as plt
synthetic_pages = result.synthesize()
plt.imshow(synthetic_pages[0]); plt.axis('off'); plt.show()
The ocr_predictor
returns a Document
object with a nested structure (with Page
, Block
, Line
, Word
, Artefact
).
To get a better understanding of the document model, check out documentation:
You can also export them as a nested dict, more appropriate for JSON format / render it or export as XML (hocr format):
json_output = result.export() # nested dict
text_output = result.render() # human-readable text
xml_output = result.export_as_xml() # hocr format
for output in xml_output:
xml_bytes_string = output[0]
xml_element = output[1]
You can also define advanced engine configurations for the models / predictors:
from onnxruntime import SessionOptions
from onnxtr.models import ocr_predictor, EngineConfig
general_options = SessionOptions() # For configuartion options see: https://onnxruntime.ai/docs/api/python/api_summary.html#sessionoptions
general_options.enable_cpu_mem_arena = False
# NOTE: The following would force to run only on the GPU if no GPU is available it will raise an error
# List of strings e.g. ["CUDAExecutionProvider", "CPUExecutionProvider"] or a list of tuples with the provider and its options e.g.
# [("CUDAExecutionProvider", {"device_id": 0}), ("CPUExecutionProvider", {"arena_extend_strategy": "kSameAsRequested"})]
providers = [("CUDAExecutionProvider", {"device_id": 0, "cudnn_conv_algo_search": "DEFAULT"})] # For available providers see: https://onnxruntime.ai/docs/execution-providers/
engine_config = EngineConfig(
session_options=general_options,
providers=providers
)
# We use the default predictor with the custom engine configuration
# NOTE: You can define differnt engine configurations for detection, recognition and classification depending on your needs
predictor = ocr_predictor(
det_engine_cfg=engine_config,
reco_engine_cfg=engine_config,
clf_engine_cfg=engine_config
)
You can also load docTR custom exported models: For exporting please take a look at the doctr documentation.
from onnxtr.models import ocr_predictor, linknet_resnet18, parseq
reco_model = parseq("path_to_custom_model.onnx", vocab="ABC")
det_model = linknet_resnet18("path_to_custom_model.onnx")
model = ocr_predictor(det_arch=det_model, reco_arch=reco_model)
You can also load models from the HuggingFace Hub:
from onnxtr.io import DocumentFile
from onnxtr.models import ocr_predictor, from_hub
img = DocumentFile.from_images(['<image_path>'])
# Load your model from the hub
model = from_hub('onnxtr/my-model')
# Pass it to the predictor
# If your model is a recognition model:
predictor = ocr_predictor(
det_arch='db_mobilenet_v3_large',
reco_arch=model
)
# If your model is a detection model:
predictor = ocr_predictor(
det_arch=model,
reco_arch='crnn_mobilenet_v3_small'
)
# Get your predictions
res = predictor(img)
HF Hub search: here.
Collection: here
Or push your own models to the hub:
from onnxtr.models import parseq, push_to_hf_hub, login_to_hub
from onnxtr.utils.vocabs import VOCABS
# Login to the hub
login_to_hub()
# Recogniton model
model = parseq("~/onnxtr-parseq-multilingual-v1.onnx", vocab=VOCABS["multilingual"])
push_to_hf_hub(
model,
model_name="onnxtr-parseq-multilingual-v1",
task="recognition", # The task for which the model is intended [detection, recognition, classification]
arch="parseq", # The name of the model architecture
override=False # Set to `True` if you want to override an existing model / repository
)
# Detection model
model = linknet_resnet18("~/onnxtr-linknet-resnet18.onnx")
push_to_hf_hub(
model,
model_name="onnxtr-linknet-resnet18",
task="detection",
arch="linknet_resnet18",
override=True
)
Credits where it's due: this repository provides ONNX models for the following architectures, converted from the docTR models:
predictor = ocr_predictor()
predictor.list_archs()
{
'detection archs':
[
'db_resnet34',
'db_resnet50',
'db_mobilenet_v3_large',
'linknet_resnet18',
'linknet_resnet34',
'linknet_resnet50',
'fast_tiny', # No 8-bit support
'fast_small', # No 8-bit support
'fast_base' # No 8-bit support
],
'recognition archs':
[
'crnn_vgg16_bn',
'crnn_mobilenet_v3_small',
'crnn_mobilenet_v3_large',
'sar_resnet31',
'master',
'vitstr_small',
'vitstr_base',
'parseq'
]
}
This repository is in sync with the doctr library, which provides a high-level API to perform OCR on documents. This repository stays up-to-date with the latest features and improvements from the base project. So we can refer to the doctr documentation for more detailed information.
NOTE:
pretrained
is the default in OnnxTR, and not available as a parameter.ONNXTR_
prefix.The CPU benchmarks was measured on a i7-14700K Intel CPU
.
The GPU benchmarks was measured on a RTX 4080 Nvidia GPU
.
Benchmarking performed on the FUNSD dataset and CORD dataset.
docTR / OnnxTR models used for the benchmarks are fast_base
(full precision) | db_resnet50
(8-bit variant) for detection and crnn_vgg16_bn
for recognition.
The smallest combination in OnnxTR (docTR) of db_mobilenet_v3_large
and crnn_mobilenet_v3_small
takes as comparison ~0.17s / Page
on the FUNSD dataset and ~0.12s / Page
on the CORD dataset in full precision on CPU.
Library | FUNSD (199 pages) | CORD (900 pages) |
---|---|---|
docTR (CPU) - v0.8.1 | ~1.29s / Page | ~0.60s / Page |
OnnxTR (CPU) - v0.6.0 | ~0.57s / Page | ~0.25s / Page |
OnnxTR (CPU) 8-bit - v0.6.0 | ~0.38s / Page | ~0.14s / Page |
OnnxTR (CPU-OpenVINO) - v0.6.0 | ~0.15s / Page | ~0.14s / Page |
EasyOCR (CPU) - v1.7.1 | ~1.96s / Page | ~1.75s / Page |
PyTesseract (CPU) - v0.3.10 | ~0.50s / Page | ~0.52s / Page |
Surya (line) (CPU) - v0.4.4 | ~48.76s / Page | ~35.49s / Page |
PaddleOCR (CPU) - no cls - v2.7.3 | ~1.27s / Page | ~0.38s / Page |
Library | FUNSD (199 pages) | CORD (900 pages) |
---|---|---|
docTR (GPU) - v0.8.1 | ~0.07s / Page | ~0.05s / Page |
docTR (GPU) float16 - v0.8.1 | ~0.06s / Page | ~0.03s / Page |
OnnxTR (GPU) - v0.6.0 | ~0.06s / Page | ~0.04s / Page |
OnnxTR (GPU) float16 - v0.6.0 | ~0.05s / Page | ~0.03s / Page |
EasyOCR (GPU) - v1.7.1 | ~0.31s / Page | ~0.19s / Page |
Surya (GPU) float16 - v0.4.4 | ~3.70s / Page | ~2.81s / Page |
PaddleOCR (GPU) - no cls - v2.7.3 | ~0.08s / Page | ~0.03s / Page |
If you wish to cite please refer to the base project citation, feel free to use this BibTeX reference:
@misc{doctr2021,
title={docTR: Document Text Recognition},
author={Mindee},
year={2021},
publisher = {GitHub},
howpublished = {\url{https://github.com/mindee/doctr}}
}
@misc{onnxtr2024,
title={OnnxTR: Optical Character Recognition made seamless & accessible to anyone, powered by Onnx},
author={Felix Dittrich},
year={2024},
publisher = {GitHub},
howpublished = {\url{https://github.com/felixdittrich92/OnnxTR}}
}
Distributed under the Apache 2.0 License. See LICENSE
for more information.
FAQs
Onnx Text Recognition (OnnxTR): docTR Onnx-Wrapper for high-performance OCR on documents.
We found that onnxtr demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Fluent Assertions is facing backlash after dropping the Apache license for a commercial model, leaving users blindsided and questioning contributor rights.
Research
Security News
Socket researchers uncover the risks of a malicious Python package targeting Discord developers.
Security News
The UK is proposing a bold ban on ransomware payments by public entities to disrupt cybercrime, protect critical services, and lead global cybersecurity efforts.