Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

openinference-instrumentation-dspy

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

openinference-instrumentation-dspy

OpenInference DSPy Instrumentation

  • 0.1.14
  • PyPI
  • Socket score

Maintainers
1

OpenInference DSPy Instrumentation

pypi

Python auto-instrumentation library for DSPy.

These traces are fully OpenTelemetry-compatible and can be sent to an OpenTelemetry collector for viewing, such as arize-phoenix.

Installation

pip install openinference-instrumentation-dspy

Quickstart

This quickstart shows you how to instrument your DSPy application. It is adapted from the DSPy quickstart.

Install required packages.

pip install openinference-instrumentation-dspy dspy-ai arize-phoenix opentelemetry-sdk opentelemetry-exporter-otlp

Start Phoenix in the background as a collector. By default, it listens on http://localhost:6006. You can visit the app via a browser at the same address. (Phoenix does not send data over the internet. It only operates locally on your machine.)

python -m phoenix.server.main serve

Set up DSPyInstrumentor to trace your DSPy application and sends the traces to Phoenix at the endpoint defined below.

from openinference.instrumentation.dspy import DSPyInstrumentor
from opentelemetry import trace as trace_api
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk import trace as trace_sdk
from opentelemetry.sdk.trace.export import SimpleSpanProcessor

endpoint = "http://127.0.0.1:6006/v1/traces"
tracer_provider = trace_sdk.TracerProvider()
trace_api.set_tracer_provider(tracer_provider)
tracer_provider.add_span_processor(SimpleSpanProcessor(OTLPSpanExporter(endpoint)))

DSPyInstrumentor().instrument()

Import dspy and configure your language model.

import dspy
from dspy.datasets.gsm8k import GSM8K, gsm8k_metric

turbo = dspy.OpenAI(model='gpt-3.5-turbo-instruct', max_tokens=250)
dspy.settings.configure(lm=turbo)
gms8k = GSM8K()
gsm8k_trainset, gsm8k_devset = gms8k.train[:10], gms8k.dev[:10]

Define a custom program that utilizes the ChainOfThought module to perform step-by-step reasoning to generate answers.

class CoT(dspy.Module):
    def __init__(self):
        super().__init__()
        self.prog = dspy.ChainOfThought("question -> answer")
    
    def forward(self, question):
        return self.prog(question=question)

Optimize your program using the BootstrapFewShotWithRandomSearch teleprompter.

from dspy.teleprompt import BootstrapFewShot

config = dict(max_bootstrapped_demos=4, max_labeled_demos=4)
teleprompter = BootstrapFewShot(metric=gsm8k_metric, **config)
optimized_cot = teleprompter.compile(CoT(), trainset=gsm8k_trainset, valset=gsm8k_devset)

Evaluate performance on the dev dataset.

from dspy.evaluate import Evaluate

evaluate = Evaluate(devset=gsm8k_devset, metric=gsm8k_metric, num_threads=4, display_progress=True, display_table=0)
evaluate(optimized_cot)

Visit the Phoenix app at http://localhost:6006 to see your traces.

More Info

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc