Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

optlang

Package Overview
Dependencies
Maintainers
2
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

optlang

Formulate optimization problems using sympy expressions and solve them using interfaces to third-party optimization software (e.g. GLPK).

  • 1.8.2
  • PyPI
  • Socket score

Maintainers
2

optlang

Sympy based mathematical programming language

|PyPI| |Python Versions| |License| |Code of Conduct| |GitHub Actions| |Coverage Status| |Documentation Status| |Gitter| |JOSS| |DOI|

Optlang is a Python package for solving mathematical optimization problems, i.e. maximizing or minimizing an objective function over a set of variables subject to a number of constraints. Optlang provides a common interface to a series of optimization tools, so different solver backends can be changed in a transparent way. Optlang's object-oriented API takes advantage of the symbolic math library sympy <http://sympy.org/en/index.html>__ to allow objective functions and constraints to be easily formulated from symbolic expressions of variables (see examples).

Show us some love by staring this repo if you find optlang useful!

Also, please use the GitHub issue tracker <https://github.com/biosustain/optlang/issues>_ to let us know about bugs or feature requests, or our gitter channel <https://gitter.im/biosustain/optlang>_ if you have problems or questions regarding optlang.

Installation


Install using pip

::

    pip install optlang

This will also install `swiglpk <https://github.com/biosustain/swiglpk>`_, an interface to the open source (mixed integer) LP solver `GLPK <https://www.gnu.org/software/glpk/>`_.
Quadratic programming (and MIQP) is supported through additional optional solvers (see below).

Dependencies

The following dependencies are needed.

  • sympy >= 1.0.0 <http://sympy.org/en/index.html>__
  • swiglpk >= 1.4.3 <https://pypi.python.org/pypi/swiglpk>__

The following are optional dependencies that allow other solvers to be used.

  • cplex <https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/>__ (LP, MILP, QP, MIQP)
  • gurobipy <http://www.gurobi.com>__ (LP, MILP, QP, MIQP)
  • scipy <http://www.scipy.org>__ (LP)
  • osqp <https://osqp.org/>__ (LP, QP)

Example


Formulating and solving the problem is straightforward (example taken
from `GLPK documentation <http://www.gnu.org/software/glpk>`__):

.. code-block:: python

    from optlang import Model, Variable, Constraint, Objective

    # All the (symbolic) variables are declared, with a name and optionally a lower and/or upper bound.
    x1 = Variable('x1', lb=0)
    x2 = Variable('x2', lb=0)
    x3 = Variable('x3', lb=0)

    # A constraint is constructed from an expression of variables and a lower and/or upper bound (lb and ub).
    c1 = Constraint(x1 + x2 + x3, ub=100)
    c2 = Constraint(10 * x1 + 4 * x2 + 5 * x3, ub=600)
    c3 = Constraint(2 * x1 + 2 * x2 + 6 * x3, ub=300)

    # An objective can be formulated
    obj = Objective(10 * x1 + 6 * x2 + 4 * x3, direction='max')

    # Variables, constraints and objective are combined in a Model object, which can subsequently be optimized.
    model = Model(name='Simple model')
    model.objective = obj
    model.add([c1, c2, c3])

    status = model.optimize()

    print("status:", model.status)
    print("objective value:", model.objective.value)
    print("----------")
    for var_name, var in model.variables.iteritems():
        print(var_name, "=", var.primal)

The example will produce the following output:

::

    status: optimal
    objective value: 733.333333333
    ----------
    x2 = 66.6666666667
    x3 = 0.0
    x1 = 33.3333333333

Using a particular solver
-------------------------
If you have more than one solver installed, it's also possible to specify which one to use, by importing directly from the
respective solver interface, e.g. :code:`from optlang.glpk_interface import Model, Variable, Constraint, Objective`

Documentation

Documentation for optlang is provided at readthedocs.org <http://optlang.readthedocs.org/en/latest/>__.

Citation


Please cite |JOSS| if you use optlang in a scientific publication. In case you would like to reference a specific version of of optlang you can also include the respective Zenodo DOI (|DOI| points to the latest version).

Contributing

Please read <CONTRIBUTING.md>__.

Funding


The development of optlang was partly support by the Novo Nordisk Foundation.

Future outlook
  • Mosek <http://www.mosek.com/>__ interface (provides academic licenses)
  • GAMS <http://www.gams.com/>__ output (support non-linear problem formulation)
  • DEAP <https://code.google.com/p/deap/>__ (support for heuristic optimization)
  • Interface to NEOS <http://www.neos-server.org/neos/>__ optimization server (for testing purposes and solver evaluation)
  • Automatically handle fractional and absolute value problems when dealing with LP/MILP/QP solvers (like GLPK, CPLEX <http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/>__ etc.)

.. |PyPI| image:: https://img.shields.io/pypi/v/optlang.svg :target: https://pypi.org/project/optlang/ :alt: Current PyPI Version .. |Python Versions| image:: https://img.shields.io/pypi/pyversions/optlang.svg :target: https://pypi.org/project/optlang/ :alt: Supported Python Versions .. |License| image:: https://img.shields.io/pypi/l/optlang.svg :target: https://www.apache.org/licenses/LICENSE-2.0 :alt: Apache Software License Version 2.0 .. |Code of Conduct| image:: https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg :target: .github/CODE_OF_CONDUCT.md :alt: Code of Conduct .. |GitHub Actions| image:: https://github.com/opencobra/optlang/actions/workflows/main.yml/badge.svg :target: https://github.com/opencobra/optlang/actions/workflows/main.yml :alt: GitHub Actions .. |Coverage Status| image:: https://codecov.io/gh/opencobra/optlang/branch/master/graph/badge.svg :target: https://codecov.io/gh/opencobra/optlang :alt: Codecov .. |Documentation Status| image:: https://readthedocs.org/projects/optlang/badge/?version=latest :target: https://readthedocs.org/projects/optlang/?badge=latest :alt: Documentation Status .. |JOSS| image:: http://joss.theoj.org/papers/cd848071a664d696e214a3950c840e15/status.svg :target: http://joss.theoj.org/papers/cd848071a664d696e214a3950c840e15 :alt: Publication .. |DOI| image:: https://zenodo.org/badge/5031/biosustain/optlang.svg :target: https://zenodo.org/badge/latestdoi/5031/biosustain/optlang :alt: Zenodo Source Code .. |Gitter| image:: https://badges.gitter.im/biosustain/optlang.svg :target: https://gitter.im/biosustain/optlang?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge :alt: Join the chat at https://gitter.im/biosustain/optlang

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc