![Oracle Drags Its Feet in the JavaScript Trademark Dispute](https://cdn.sanity.io/images/cgdhsj6q/production/919c3b22c24f93884c548d60cbb338e819ff2435-1024x1024.webp?w=400&fit=max&auto=format)
Security News
Oracle Drags Its Feet in the JavaScript Trademark Dispute
Oracle seeks to dismiss fraud claims in the JavaScript trademark dispute, delaying the case and avoiding questions about its right to the name.
ots-eval is a toolset for the over-time stability evaluation of multiple multivariate time series based on cluster transitions. It contains an over-time stability measure for crisp over-time clusterings called CLOSE [1], one stability measure for fuzzy over-time clusterings called FCSETS [2], two outlier detection algorithms DOOTS [3,4] and DACT [5] addressing cluster-transition-based outliers and an over-time clustering algorithm named C(OTS)^2 [6]. All approaches focus on multivariate time series data that is clustered per timestamp.
The toolset was implemented by Martha Krakowski (Tatusch) and Gerhard Klassen.
You can simply install ots-eval by using pip:
pip install ots-eval
You can import the package in your Python script via:
import ots_eval
ots-eval requires:
In the doc
folder, there are some explanations for the usage of every approach.
ots-eval is distributed under the 3-Clause BSD license.
This toolset is the implementation of approaches from our following works:
[1]
Tatusch, M., Klassen, G., Bravidor, M., and Conrad, S. (2020).
How is Your Team Spirit? Cluster Over-Time Stability Evaluation.
In: Machine Learning and Data Mining in Pattern Recognition, 16th International Conference on Machine Learning and
Data Mining, MLDM 2020, pages 155–170.
[2]
Klassen, G., Tatusch, M., Himmelspach, L., and Conrad, S. (2020).
Fuzzy Clustering Stability Evaluation of Time Series.
In: Information Processing and Management of Uncertainty in Knowledge-Based Systems, 18th International Conference, IPMU 2020, pages 680-692.
[3]
Tatusch, M., Klassen, G., Bravidor, M., and Conrad, S. (2019).
Show me your friends and i’ll tell you who you are. Finding anomalous time series by conspicuous clus-
ter transitions.
In: Data Mining. AusDM 2019. Communications in Computer and Information Science, pages 91–103.
[4]
Tatusch, M., Klassen, G., and Conrad, S. (2020).
Behave or be detected! Identifying outlier sequences by their group cohesion.
In: Big Data Analytics and KnowledgeDiscovery, 22nd International Conference, DaWaK 2020, pages 333–347.
[5]
Tatusch, M., Klassen, G., and Conrad, S. (2020).
Loners stand out. Identification of anomalous subsequences based on group performance.
In: Advanced Data Mining and Applications, ADMA 2020, pages 360–369.
[6]
Klassen, G., Tatusch, M., and Conrad, S. (2020).
Clustering of time series regarding their over-time stability.
In: Proceedings of the 2020 IEEE Symposium Series on Computational Intelligence (SSCI), pages 1051–1058.
FAQs
Over-Time Stability Evaluation
We found that ots-eval demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Oracle seeks to dismiss fraud claims in the JavaScript trademark dispute, delaying the case and avoiding questions about its right to the name.
Security News
The Linux Foundation is warning open source developers that compliance with global sanctions is mandatory, highlighting legal risks and restrictions on contributions.
Security News
Maven Central now validates Sigstore signatures, making it easier for developers to verify the provenance of Java packages.