Research
Security News
Malicious npm Package Targets Solana Developers and Hijacks Funds
A malicious npm package targets Solana developers, rerouting funds in 2% of transactions to a hardcoded address.
Makes it easy to parallelize your calculations in pandas on all your CPUs.
pip install --upgrade parallel-pandas
import pandas as pd
import numpy as np
from parallel_pandas import ParallelPandas
#initialize parallel-pandas
ParallelPandas.initialize(n_cpu=16, split_factor=4, disable_pr_bar=True)
# create big DataFrame
df = pd.DataFrame(np.random.random((1_000_000, 100)))
# calculate multiple quantiles. Pandas only uses one core of CPU
%%timeit
res = df.quantile(q=[.25, .5, .95], axis=1)
3.66 s ± 31.6 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
#p_quantile is parallel analogue of quantile methods. Can use all cores of your CPU.
%%timeit
res = df.p_quantile(q=[.25, .5, .95], axis=1)
679 ms ± 10.4 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
As you can see the p_quantile
method is 5 times faster!
Under the hood, parallel-pandas works very simply. The Dataframe or Series is split into chunks along the first or second axis. Then these chunks are passed to a pool of processes or threads where the desired method is executed on each part. At the end, the parts are concatenated to get the final result.
When initializing parallel-pandas you can specify the following options:
n_cpu
- the number of cores of your CPU that you want to use (default None
- use all cores of CPU)split_factor
- Affects the number of chunks into which the DataFrame/Series is split according to the formula chunks_number = split_factor*n_cpu
(default 1).show_vmem
- Shows a progress bar with available RAM (default False
)disable_pr_bar
- Disable the progress bar for parallel tasks (default False
)For example
import pandas as pd
import numpy as np
from parallel_pandas import ParallelPandas
#initialize parallel-pandas
ParallelPandas.initialize(n_cpu=16, split_factor=4, disable_pr_bar=False)
# create big DataFrame
df = pd.DataFrame(np.random.random((1_000_000, 100)))
During initialization, we specified split_factor=4
and n_cpu = 16
, so the DataFrame will be split into 64 chunks (in the case of the describe
method, axis = 1) and the progress bar shows the progress for each chunk
You can parallelize any expression with pandas Dataframe. For example, let's do a z-score normalization of columns in a dataframe. Let's look at the execution time and memory consumption. Compare with synchronous execution and with Dask.DataFrame
import pandas as pd
import numpy as np
from parallel_pandas import ParallelPandas
import dask.dataframe as dd
from time import monotonic
#initialize parallel-pandas
ParallelPandas.initialize(n_cpu=16, split_factor=8, disable_pr_bar=True)
# create big DataFrame
df = pd.DataFrame(np.random.random((1_000_000, 1000)))
# create dask DataFrame
ddf = dd.from_pandas(df, npartitions=128)
start = monotonic()
res=(df-df.mean())/df.std()
print(f'synchronous z-score normalization time took: {monotonic()-start:.1f} s.')
synchronous z-score normalization time took: 21.7 s.
#parallel-pandas
start = monotonic()
res=(df-df.p_mean())/df.p_std()
print(f'parallel z-score normalization time took: {monotonic()-start:.1f} s.')
parallel z-score normalization time took: 11.7 s.
#dask dataframe
start = monotonic()
res=((ddf-ddf.mean())/ddf.std()).compute()
print(f'dask parallel z-score normalization time took: {monotonic()-start:.1f} s.')
dask parallel z-score normalization time took: 12.5 s.
Pay attention to memory consumption. parallel-pandas
and dask
use almost half as much RAM as pandas
For some methods parallel-pandas
is faster than dask.DataFrame
:
#dask
%%time
res = ddf.nunique().compute()
Wall time: 42.9 s
%%time
res = ddf.rolling(10).mean().compute()
Wall time: 19.1 s
#parallel-pandas
%%time
res = df.p_nunique()
Wall time: 12.9 s
%%time
res = df.rolling(10).p_mean()
Wall time: 12.5 s
methods | parallel analogue | executor |
---|---|---|
pd.Series.apply() | pd.Series.p_apply() | threads / processes |
pd.Series.map() | pd.Series.p_map() | threads / processes |
methods | parallel analogue | executor |
---|---|---|
pd.SeriesGroupBy.apply() | pd.SeriesGroupBy.p_apply() | threads / processes |
methods | parallel analogue | executor |
---|---|---|
df.mean() | df.p_mean() | threads |
df.min() | df.p_min() | threads |
df.max() | df.p_max() | threads |
df.median() | df.p_max() | threads |
df.kurt() | df.p_kurt() | threads |
df.skew() | df.p_skew() | threads |
df.sum() | df.p_sum() | threads |
df.prod() | df.p_prod() | threads |
df.var() | df.p_var() | threads |
df.sem() | df.p_sem() | threads |
df.std() | df.p_std() | threads |
df.cummin() | df.p_cummin() | threads |
df.cumsum() | df.p_cumsum() | threads |
df.cummax() | df.p_cummax() | threads |
df.cumprod() | df.p_cumprod() | threads |
df.apply() | df.p_apply() | threads / processes |
df.applymap() | df.p_applymap() | processes |
df.replace() | df.p_replace() | threads |
df.describe() | df.p_describe() | threads |
df.nunique() | df.p_nunique() | threads / processes |
df.mad() | df.p_mad() | threads |
df.idxmin() | df.p_idxmin() | threads |
df.idxmax() | df.p_idxmax() | threads |
df.rank() | df.p_rank() | threads |
df.mode() | df.p_mode() | threads/processes |
df.agg() | df.p_agg() | threads/processes |
df.aggregate() | df.p_aggregate() | threads/processes |
df.quantile() | df.p_quantile() | threads/processes |
df.corr() | df.p_corr() | threads/processes |
methods | parallel analogue | executor |
---|---|---|
DataFrameGroupBy.apply() | DataFrameGroupBy.p_apply() | threads / processes |
methods | parallel analogue | executor |
---|---|---|
pd.core.window.Rolling.apply() | pd.core.window.Rolling.p_apply() | threads / processes |
pd.core.window.Rolling.min() | pd.core.window.Rolling.p_min() | threads / processes |
pd.core.window.Rolling.max() | pd.core.window.Rolling.p_max() | threads / processes |
pd.core.window.Rolling.mean() | pd.core.window.Rolling.p_mean() | threads / processes |
pd.core.window.Rolling.sum() | pd.core.window.Rolling.p_sum() | threads / processes |
pd.core.window.Rolling.var() | pd.core.window.Rolling.p_var() | threads / processes |
pd.core.window.Rolling.sem() | pd.core.window.Rolling.p_sem() | threads / processes |
pd.core.window.Rolling.skew() | pd.core.window.Rolling.p_skew() | threads / processes |
pd.core.window.Rolling.kurt() | pd.core.window.Rolling.p_kurt() | threads / processes |
pd.core.window.Rolling.median() | pd.core.window.Rolling.p_median() | threads / processes |
pd.core.window.Rolling.quantile() | pd.core.window.Rolling.p_quantile() | threads / processes |
pd.core.window.Rolling.rank() | pd.core.window.Rolling.p_rank() | threads / processes |
pd.core.window.Rolling.agg() | pd.core.window.Rolling.p_agg() | threads / processes |
pd.core.window.Rolling.aggregate() | pd.core.window.Rolling.p_aggregate() | threads / processes |
methods | parallel analogue | executor |
---|---|---|
pd.core.window.Window.mean() | pd.core.window.Window.p_mean() | threads / processes |
pd.core.window.Window.sum() | pd.core.window.Window.p_sum() | threads / processes |
pd.core.window.Window.var() | pd.core.window.Window.p_var() | threads / processes |
pd.core.window.Window.std() | pd.core.window.Window.p_std() | threads / processes |
methods | parallel analogue | executor |
---|---|---|
pd.core.window.RollingGroupby.apply() | pd.core.window.RollingGroupby.p_apply() | threads / processes |
pd.core.window.RollingGroupby.min() | pd.core.window.RollingGroupby.p_min() | threads / processes |
pd.core.window.RollingGroupby.max() | pd.core.window.RollingGroupby.p_max() | threads / processes |
pd.core.window.RollingGroupby.mean() | pd.core.window.RollingGroupby.p_mean() | threads / processes |
pd.core.window.RollingGroupby.sum() | pd.core.window.RollingGroupby.p_sum() | threads / processes |
pd.core.window.RollingGroupby.var() | pd.core.window.RollingGroupby.p_var() | threads / processes |
pd.core.window.RollingGroupby.sem() | pd.core.window.RollingGroupby.p_sem() | threads / processes |
pd.core.window.RollingGroupby.skew() | pd.core.window.RollingGroupby.p_skew() | threads / processes |
pd.core.window.RollingGroupby.kurt() | pd.core.window.RollingGroupby.p_kurt() | threads / processes |
pd.core.window.RollingGroupby.median() | pd.core.window.RollingGroupby.p_median() | threads / processes |
pd.core.window.RollingGroupby.quantile() | pd.core.window.RollingGroupby.p_quantile() | threads / processes |
pd.core.window.RollingGroupby.rank() | pd.core.window.RollingGroupby.p_rank() | threads / processes |
pd.core.window.RollingGroupby.agg() | pd.core.window.RollingGroupby.p_agg() | threads / processes |
pd.core.window.RollingGroupby.aggregate() | pd.core.window.RollingGroupby.p_aggregate() | threads / processes |
methods | parallel analogue | executor |
---|---|---|
pd.core.window.Expanding.apply() | pd.core.window.Expanding.p_apply() | threads / processes |
pd.core.window.Expanding.min() | pd.core.window.Expanding.p_min() | threads / processes |
pd.core.window.Expanding.max() | pd.core.window.Expanding.p_max() | threads / processes |
pd.core.window.Expanding.mean() | pd.core.window.Expanding.p_mean() | threads / processes |
pd.core.window.Expanding.sum() | pd.core.window.Expanding.p_sum() | threads / processes |
pd.core.window.Expanding.var() | pd.core.window.Expanding.p_var() | threads / processes |
pd.core.window.Expanding.sem() | pd.core.window.Expanding.p_sem() | threads / processes |
pd.core.window.Expanding.skew() | pd.core.window.Expanding.p_skew() | threads / processes |
pd.core.window.Expanding.kurt() | pd.core.window.Expanding.p_kurt() | threads / processes |
pd.core.window.Expanding.median() | pd.core.window.Expanding.p_median() | threads / processes |
pd.core.window.Expanding.quantile() | pd.core.window.Expanding.p_quantile() | threads / processes |
pd.core.window.Expanding.rank() | pd.core.window.Expanding.p_rank() | threads / processes |
pd.core.window.Expanding.agg() | pd.core.window.Expanding.p_agg() | threads / processes |
pd.core.window.Expanding.aggregate() | pd.core.window.Expanding.p_aggregate() | threads / processes |
methods | parallel analogue | executor |
---|---|---|
pd.core.window.ExpandingGroupby.apply() | pd.core.window.ExpandingGroupby.p_apply() | threads / processes |
pd.core.window.ExpandingGroupby.min() | pd.core.window.ExpandingGroupby.p_min() | threads / processes |
pd.core.window.ExpandingGroupby.max() | pd.core.window.ExpandingGroupby.p_max() | threads / processes |
pd.core.window.ExpandingGroupby.mean() | pd.core.window.ExpandingGroupby.p_mean() | threads / processes |
pd.core.window.ExpandingGroupby.sum() | pd.core.window.ExpandingGroupby.p_sum() | threads / processes |
pd.core.window.ExpandingGroupby.var() | pd.core.window.ExpandingGroupby.p_var() | threads / processes |
pd.core.window.ExpandingGroupby.sem() | pd.core.window.ExpandingGroupby.p_sem() | threads / processes |
pd.core.window.ExpandingGroupby.skew() | pd.core.window.ExpandingGroupby.p_skew() | threads / processes |
pd.core.window.ExpandingGroupby.kurt() | pd.core.window.ExpandingGroupby.p_kurt() | threads / processes |
pd.core.window.ExpandingGroupby.median() | pd.core.window.ExpandingGroupby.p_median() | threads / processes |
pd.core.window.ExpandingGroupby.quantile() | pd.core.window.ExpandingGroupby.p_quantile() | threads / processes |
pd.core.window.ExpandingGroupby.rank() | pd.core.window.ExpandingGroupby.p_rank() | threads / processes |
pd.core.window.ExpandingGroupby.agg() | pd.core.window.ExpandingGroupby.p_agg() | threads / processes |
pd.core.window.ExpandingGroupby.aggregate() | pd.core.window.ExpandingGroupby.p_aggregate() | threads / processes |
methods | parallel analogue | executor |
---|---|---|
pd.core.window.ExponentialMovingWindow.mean() | pd.core.window.ExponentialMovingWindow.p_mean() | threads / processes |
pd.core.window.ExponentialMovingWindow.sum() | pd.core.window.ExponentialMovingWindow.p_sum() | threads / processes |
pd.core.window.ExponentialMovingWindow.var() | pd.core.window.ExponentialMovingWindow.p_var() | threads / processes |
pd.core.window.ExponentialMovingWindow.std() | pd.core.window.ExponentialMovingWindow.p_std() | threads / processes |
methods | parallel analogue | executor |
---|---|---|
pd.core.window.ExponentialMovingWindowGroupby.mean() | pd.core.window.ExponentialMovingWindowGroupby.p_mean() | threads / processes |
pd.core.window.ExponentialMovingWindowGroupby.sum() | pd.core.window.ExponentialMovingWindowGroupby.p_sum() | threads / processes |
pd.core.window.ExponentialMovingWindowGroupby.var() | pd.core.window.ExponentialMovingWindowGroupby.p_var() | threads / processes |
pd.core.window.ExponentialMovingWindowGroupby.std() | pd.core.window.ExponentialMovingWindowGroupby.p_std() | threads / processes |
FAQs
Parallel processing on pandas with progress bars
We found that parallel-pandas demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Research
Security News
A malicious npm package targets Solana developers, rerouting funds in 2% of transactions to a hardcoded address.
Security News
Research
Socket researchers have discovered malicious npm packages targeting crypto developers, stealing credentials and wallet data using spyware delivered through typosquats of popular cryptographic libraries.
Security News
Socket's package search now displays weekly downloads for npm packages, helping developers quickly assess popularity and make more informed decisions.