Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

parmap

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

parmap

map and starmap implementations passing additional arguments and parallelizing if possible

  • 1.7.0
  • PyPI
  • Socket score

Maintainers
1

parmap

.. image:: https://github.com/zeehio/parmap/actions/workflows/test.yml/badge.svg :target: https://github.com/zeehio/parmap/actions/workflows/test.yml

.. image:: https://img.shields.io/conda/vn/conda-forge/parmap.svg :target: https://anaconda.org/conda-forge/parmap :alt: conda-forge version

.. image:: https://readthedocs.org/projects/parmap/badge/?version=latest :target: https://readthedocs.org/projects/parmap/?badge=latest :alt: Documentation Status

.. image:: https://codecov.io/github/zeehio/parmap/coverage.svg?branch=main :target: https://codecov.io/github/zeehio/parmap?branch=main

.. image:: https://codeclimate.com/github/zeehio/parmap/badges/gpa.svg :target: https://codeclimate.com/github/zeehio/parmap :alt: Code Climate

This small python module implements four functions: map and starmap, and their async versions map_async and starmap_async.

What does parmap offer?

  • Provide an easy to use syntax for both map and starmap.
  • Parallelize transparently whenever possible.
  • Pass additional positional and keyword arguments to parallelized functions.
  • Show a progress bar (requires tqdm as optional package)

Installation:

::

 pip install tqdm # for progress bar support pip install parmap

Usage:

Here are some examples with some unparallelized code parallelized with parmap:

Simple parallelization example:


::

  import parmap
  # You want to do:
  mylist = [1,2,3]
  argument1 = 3.14
  argument2 = True
  y = [myfunction(x, argument1, mykeyword=argument2) for x in mylist]
  # In parallel:
  y = parmap.map(myfunction, mylist, argument1, mykeyword=argument2)


Show a progress bar:
~~~~~~~~~~~~~~~~~~~~~

Requires ``pip install tqdm``

::

  # You want to do:
  y = [myfunction(x) for x in mylist]
  # In parallel, with a progress bar
  y = parmap.map(myfunction, mylist, pm_pbar=True)
  # Passing extra options to the tqdm progress bar
  y = parmap.map(myfunction, mylist, pm_pbar={"desc": "Example"})


Passing multiple arguments:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

::

  # You want to do:
  z = [myfunction(x, y, argument1, argument2, mykey=argument3) for (x,y) in mylist]
  # In parallel:
  z = parmap.starmap(myfunction, mylist, argument1, argument2, mykey=argument3)

  # You want to do:
  listx = [1, 2, 3, 4, 5, 6]
  listy = [2, 3, 4, 5, 6, 7]
  param = 3.14
  param2 = 42
  listz = []
  for (x, y) in zip(listx, listy):
      listz.append(myfunction(x, y, param1, param2))
  # In parallel:
  listz = parmap.starmap(myfunction, zip(listx, listy), param1, param2)


Advanced: Multiple parallel tasks running in parallel

In this example, Task1 uses 5 cores, while Task2 uses 3 cores. Both tasks start to compute simultaneously, and we print a message as soon as any of the tasks finishes, retreiving the result.

::

import parmap
def task1(item):
    return 2*item

def task2(item):
    return 2*item + 1

items1 = range(500000)
items2 = range(500)

with parmap.map_async(task1, items1, pm_processes=5) as result1:
    with parmap.map_async(task2, items2, pm_processes=3) as result2:
        data_task1 = None
        data_task2 = None
        task1_working = True
        task2_working = True
        while task1_working or task2_working:
            result1.wait(0.1)
            if task1_working and result1.ready():
                print("Task 1 has finished!")
                data_task1 = result1.get()
                task1_working = False
            result2.wait(0.1)
            if task2_working and result2.ready():
                print("Task 2 has finished!")
                data_task2 = result2.get()
                task2_working = False
#Further work with data_task1 or data_task2

map and starmap already exist. Why reinvent the wheel?

The existing functions have some usability limitations:

  • The built-in python function map [#builtin-map]_ is not able to parallelize.
  • multiprocessing.Pool().map [#multiproc-map]_ does not allow any additional argument to the mapped function.
  • multiprocessing.Pool().starmap allows passing multiple arguments, but in order to pass a constant argument to the mapped function you will need to convert it to an iterator using itertools.repeat(your_parameter) [#itertools-repeat]_

parmap aims to overcome this limitations in the simplest possible way.

Additional features in parmap:


-  Create a pool for parallel computation automatically if possible.
-  ``parmap.map(..., ..., pm_parallel=False)`` # disables parallelization
-  ``parmap.map(..., ..., pm_processes=4)`` # use 4 parallel processes
-  ``parmap.map(..., ..., pm_pbar=True)`` # show a progress bar (requires tqdm)
-  ``parmap.map(..., ..., pm_pool=multiprocessing.Pool())`` # use an existing
   pool, in this case parmap will not close the pool.
-  ``parmap.map(..., ..., pm_chunksize=3)`` # size of chunks (see
   multiprocessing.Pool().map)

Limitations:
-------------

``parmap.map()`` and ``parmap.starmap()`` (and their async versions) have their own 
arguments (``pm_parallel``, ``pm_pbar``...). Those arguments are never passed
to the underlying function. In the following example, ``myfun`` will receive 
``myargument``, but not ``pm_parallel``. Do not write functions that require
keyword arguments starting with ``pm_``, as ``parmap`` may need them in the future.

::

    parmap.map(myfun, mylist, pm_parallel=True, myargument=False)

Additionally, there are other keyword arguments that should be avoided in the
functions you write, because of parmap backwards compatibility reasons. The list
of conflicting arguments is: ``parallel``, ``chunksize``, ``pool``,
``processes``, ``callback``, ``error_callback`` and ``parmap_progress``.



Acknowledgments:
----------------

This package started after `this question <https://stackoverflow.com/q/5442910/446149>`__, 
when I offered this `answer <http://stackoverflow.com/a/21292849/446149>`__, 
taking the suggestions of J.F. Sebastian for his `answer <http://stackoverflow.com/a/5443941/446149>`__

Known works using parmap
---------------------------

- Davide Gerosa, Michael Kesden, "PRECESSION. Dynamics of spinning black-hole
  binaries with python." `arXiv:1605.01067 <https://arxiv.org/abs/1605.01067>`__, 2016
- Thibault de Boissiere, `Implementation of Deep learning papers <https://github.com/tdeboissiere/DeepLearningImplementations>`__, 2017
    - Wasserstein Generative Adversarial Networks `arXiv:1701.07875 <https://arxiv.org/abs/1701.07875>`__
    - pix2pix `arXiv:1611.07004 <https://arxiv.org/abs/1611.07004>`__
    - Improved Techniques for Training Generative Adversarial Networks `arXiv:1606.03498 <https://arxiv.org/abs/1606.03498>`__
    - Colorful Image Colorization `arXiv:1603.08511 <https://arxiv.org/abs/1603.08511>`__
    - Deep Feature Interpolation for Image Content Changes `arXiv:1611.05507 <https://arxiv.org/abs/1611.05507>`__
    - InfoGAN `arXiv:1606.03657 <https://arxiv.org/abs/1606.03657>`__
- Geoscience Australia, `SIFRA, a System for Infrastructure Facility Resilience Analysis <https://github.com/GeoscienceAustralia/sifra>`__, 2017
- André F. Rendeiro, Christian Schmidl, Jonathan C. Strefford, Renata Walewska, Zadie Davis, Matthias Farlik, David Oscier, Christoph Bock "Chromatin accessibility maps of chronic lymphocytic leukemia identify subtype-specific epigenome signatures and transcription regulatory networks" Nat. Commun. 7:11938 doi: 10.1038/ncomms11938 (2016). `Paper <https://doi.org/10.5281/zenodo.231352>`__, `Code <https://github.com/epigen/cll-chromatin>`__


References
-----------

.. [#builtin-map] http://docs.python.org/dev/library/functions.html#map
.. [#multiproc-starmap] http://docs.python.org/dev/library/multiprocessing.html#multiprocessing.pool.Pool.starmap
.. [#multiproc-map] http://docs.python.org/dev/library/multiprocessing.html#multiprocessing.pool.Pool.map
.. [#itertools-repeat] http://docs.python.org/dev/library/itertools.html#itertools.repeat

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc