Security News
Research
Data Theft Repackaged: A Case Study in Malicious Wrapper Packages on npm
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
map and starmap implementations passing additional arguments and parallelizing if possible
.. image:: https://github.com/zeehio/parmap/actions/workflows/test.yml/badge.svg :target: https://github.com/zeehio/parmap/actions/workflows/test.yml
.. image:: https://img.shields.io/conda/vn/conda-forge/parmap.svg :target: https://anaconda.org/conda-forge/parmap :alt: conda-forge version
.. image:: https://readthedocs.org/projects/parmap/badge/?version=latest :target: https://readthedocs.org/projects/parmap/?badge=latest :alt: Documentation Status
.. image:: https://codecov.io/github/zeehio/parmap/coverage.svg?branch=main :target: https://codecov.io/github/zeehio/parmap?branch=main
.. image:: https://codeclimate.com/github/zeehio/parmap/badges/gpa.svg :target: https://codeclimate.com/github/zeehio/parmap :alt: Code Climate
This small python module implements four functions: map
and
starmap
, and their async versions map_async
and starmap_async
.
map
and starmap
.tqdm
as optional package)::
pip install tqdm # for progress bar support pip install parmap
Here are some examples with some unparallelized code parallelized with parmap:
Simple parallelization example:
::
import parmap
# You want to do:
mylist = [1,2,3]
argument1 = 3.14
argument2 = True
y = [myfunction(x, argument1, mykeyword=argument2) for x in mylist]
# In parallel:
y = parmap.map(myfunction, mylist, argument1, mykeyword=argument2)
Show a progress bar:
~~~~~~~~~~~~~~~~~~~~~
Requires ``pip install tqdm``
::
# You want to do:
y = [myfunction(x) for x in mylist]
# In parallel, with a progress bar
y = parmap.map(myfunction, mylist, pm_pbar=True)
# Passing extra options to the tqdm progress bar
y = parmap.map(myfunction, mylist, pm_pbar={"desc": "Example"})
Passing multiple arguments:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
::
# You want to do:
z = [myfunction(x, y, argument1, argument2, mykey=argument3) for (x,y) in mylist]
# In parallel:
z = parmap.starmap(myfunction, mylist, argument1, argument2, mykey=argument3)
# You want to do:
listx = [1, 2, 3, 4, 5, 6]
listy = [2, 3, 4, 5, 6, 7]
param = 3.14
param2 = 42
listz = []
for (x, y) in zip(listx, listy):
listz.append(myfunction(x, y, param1, param2))
# In parallel:
listz = parmap.starmap(myfunction, zip(listx, listy), param1, param2)
Advanced: Multiple parallel tasks running in parallel
In this example, Task1 uses 5 cores, while Task2 uses 3 cores. Both tasks start to compute simultaneously, and we print a message as soon as any of the tasks finishes, retreiving the result.
::
import parmap
def task1(item):
return 2*item
def task2(item):
return 2*item + 1
items1 = range(500000)
items2 = range(500)
with parmap.map_async(task1, items1, pm_processes=5) as result1:
with parmap.map_async(task2, items2, pm_processes=3) as result2:
data_task1 = None
data_task2 = None
task1_working = True
task2_working = True
while task1_working or task2_working:
result1.wait(0.1)
if task1_working and result1.ready():
print("Task 1 has finished!")
data_task1 = result1.get()
task1_working = False
result2.wait(0.1)
if task2_working and result2.ready():
print("Task 2 has finished!")
data_task2 = result2.get()
task2_working = False
#Further work with data_task1 or data_task2
The existing functions have some usability limitations:
map
[#builtin-map]_
is not able to parallelize.multiprocessing.Pool().map
[#multiproc-map]_
does not allow any additional argument to the mapped function.multiprocessing.Pool().starmap
allows passing multiple arguments,
but in order to pass a constant argument to the mapped function you
will need to convert it to an iterator using
itertools.repeat(your_parameter)
[#itertools-repeat]_parmap
aims to overcome this limitations in the simplest possible way.
Additional features in parmap:
- Create a pool for parallel computation automatically if possible.
- ``parmap.map(..., ..., pm_parallel=False)`` # disables parallelization
- ``parmap.map(..., ..., pm_processes=4)`` # use 4 parallel processes
- ``parmap.map(..., ..., pm_pbar=True)`` # show a progress bar (requires tqdm)
- ``parmap.map(..., ..., pm_pool=multiprocessing.Pool())`` # use an existing
pool, in this case parmap will not close the pool.
- ``parmap.map(..., ..., pm_chunksize=3)`` # size of chunks (see
multiprocessing.Pool().map)
Limitations:
-------------
``parmap.map()`` and ``parmap.starmap()`` (and their async versions) have their own
arguments (``pm_parallel``, ``pm_pbar``...). Those arguments are never passed
to the underlying function. In the following example, ``myfun`` will receive
``myargument``, but not ``pm_parallel``. Do not write functions that require
keyword arguments starting with ``pm_``, as ``parmap`` may need them in the future.
::
parmap.map(myfun, mylist, pm_parallel=True, myargument=False)
Additionally, there are other keyword arguments that should be avoided in the
functions you write, because of parmap backwards compatibility reasons. The list
of conflicting arguments is: ``parallel``, ``chunksize``, ``pool``,
``processes``, ``callback``, ``error_callback`` and ``parmap_progress``.
Acknowledgments:
----------------
This package started after `this question <https://stackoverflow.com/q/5442910/446149>`__,
when I offered this `answer <http://stackoverflow.com/a/21292849/446149>`__,
taking the suggestions of J.F. Sebastian for his `answer <http://stackoverflow.com/a/5443941/446149>`__
Known works using parmap
---------------------------
- Davide Gerosa, Michael Kesden, "PRECESSION. Dynamics of spinning black-hole
binaries with python." `arXiv:1605.01067 <https://arxiv.org/abs/1605.01067>`__, 2016
- Thibault de Boissiere, `Implementation of Deep learning papers <https://github.com/tdeboissiere/DeepLearningImplementations>`__, 2017
- Wasserstein Generative Adversarial Networks `arXiv:1701.07875 <https://arxiv.org/abs/1701.07875>`__
- pix2pix `arXiv:1611.07004 <https://arxiv.org/abs/1611.07004>`__
- Improved Techniques for Training Generative Adversarial Networks `arXiv:1606.03498 <https://arxiv.org/abs/1606.03498>`__
- Colorful Image Colorization `arXiv:1603.08511 <https://arxiv.org/abs/1603.08511>`__
- Deep Feature Interpolation for Image Content Changes `arXiv:1611.05507 <https://arxiv.org/abs/1611.05507>`__
- InfoGAN `arXiv:1606.03657 <https://arxiv.org/abs/1606.03657>`__
- Geoscience Australia, `SIFRA, a System for Infrastructure Facility Resilience Analysis <https://github.com/GeoscienceAustralia/sifra>`__, 2017
- André F. Rendeiro, Christian Schmidl, Jonathan C. Strefford, Renata Walewska, Zadie Davis, Matthias Farlik, David Oscier, Christoph Bock "Chromatin accessibility maps of chronic lymphocytic leukemia identify subtype-specific epigenome signatures and transcription regulatory networks" Nat. Commun. 7:11938 doi: 10.1038/ncomms11938 (2016). `Paper <https://doi.org/10.5281/zenodo.231352>`__, `Code <https://github.com/epigen/cll-chromatin>`__
References
-----------
.. [#builtin-map] http://docs.python.org/dev/library/functions.html#map
.. [#multiproc-starmap] http://docs.python.org/dev/library/multiprocessing.html#multiprocessing.pool.Pool.starmap
.. [#multiproc-map] http://docs.python.org/dev/library/multiprocessing.html#multiprocessing.pool.Pool.map
.. [#itertools-repeat] http://docs.python.org/dev/library/itertools.html#itertools.repeat
FAQs
map and starmap implementations passing additional arguments and parallelizing if possible
We found that parmap demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Research
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
Research
Security News
Attackers used a malicious npm package typosquatting a popular ESLint plugin to steal sensitive data, execute commands, and exploit developer systems.
Security News
The Ultralytics' PyPI Package was compromised four times in one weekend through GitHub Actions cache poisoning and failure to rotate previously compromised API tokens.