parmap
.. image:: https://github.com/zeehio/parmap/actions/workflows/test.yml/badge.svg
:target: https://github.com/zeehio/parmap/actions/workflows/test.yml
.. image:: https://img.shields.io/conda/vn/conda-forge/parmap.svg
:target: https://anaconda.org/conda-forge/parmap
:alt: conda-forge version
.. image:: https://readthedocs.org/projects/parmap/badge/?version=latest
:target: https://readthedocs.org/projects/parmap/?badge=latest
:alt: Documentation Status
.. image:: https://codecov.io/github/zeehio/parmap/coverage.svg?branch=main
:target: https://codecov.io/github/zeehio/parmap?branch=main
.. image:: https://codeclimate.com/github/zeehio/parmap/badges/gpa.svg
:target: https://codeclimate.com/github/zeehio/parmap
:alt: Code Climate
This small python module implements four functions: map
and
starmap
, and their async versions map_async
and starmap_async
.
What does parmap offer?
- Provide an easy to use syntax for both
map
and starmap
. - Parallelize transparently whenever possible.
- Pass additional positional and keyword arguments to parallelized functions.
- Show a progress bar (requires
tqdm
as optional package)
Installation:
::
pip install tqdm # for progress bar support
pip install parmap
Usage:
Here are some examples with some unparallelized code parallelized with
parmap:
Simple parallelization example:
::
import parmap
# You want to do:
mylist = [1,2,3]
argument1 = 3.14
argument2 = True
y = [myfunction(x, argument1, mykeyword=argument2) for x in mylist]
# In parallel:
y = parmap.map(myfunction, mylist, argument1, mykeyword=argument2)
Show a progress bar:
~~~~~~~~~~~~~~~~~~~~~
Requires ``pip install tqdm``
::
# You want to do:
y = [myfunction(x) for x in mylist]
# In parallel, with a progress bar
y = parmap.map(myfunction, mylist, pm_pbar=True)
# Passing extra options to the tqdm progress bar
y = parmap.map(myfunction, mylist, pm_pbar={"desc": "Example"})
Passing multiple arguments:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
::
# You want to do:
z = [myfunction(x, y, argument1, argument2, mykey=argument3) for (x,y) in mylist]
# In parallel:
z = parmap.starmap(myfunction, mylist, argument1, argument2, mykey=argument3)
# You want to do:
listx = [1, 2, 3, 4, 5, 6]
listy = [2, 3, 4, 5, 6, 7]
param = 3.14
param2 = 42
listz = []
for (x, y) in zip(listx, listy):
listz.append(myfunction(x, y, param1, param2))
# In parallel:
listz = parmap.starmap(myfunction, zip(listx, listy), param1, param2)
Advanced: Multiple parallel tasks running in parallel
In this example, Task1 uses 5 cores, while Task2 uses 3 cores. Both tasks start
to compute simultaneously, and we print a message as soon as any of the tasks
finishes, retreiving the result.
::
import parmap
def task1(item):
return 2*item
def task2(item):
return 2*item + 1
items1 = range(500000)
items2 = range(500)
with parmap.map_async(task1, items1, pm_processes=5) as result1:
with parmap.map_async(task2, items2, pm_processes=3) as result2:
data_task1 = None
data_task2 = None
task1_working = True
task2_working = True
while task1_working or task2_working:
result1.wait(0.1)
if task1_working and result1.ready():
print("Task 1 has finished!")
data_task1 = result1.get()
task1_working = False
result2.wait(0.1)
if task2_working and result2.ready():
print("Task 2 has finished!")
data_task2 = result2.get()
task2_working = False
#Further work with data_task1 or data_task2
map and starmap already exist. Why reinvent the wheel?
The existing functions have some usability limitations:
- The built-in python function
map
[#builtin-map]_
is not able to parallelize. multiprocessing.Pool().map
[#multiproc-map]_
does not allow any additional argument to the mapped function.multiprocessing.Pool().starmap
allows passing multiple arguments,
but in order to pass a constant argument to the mapped function you
will need to convert it to an iterator using
itertools.repeat(your_parameter)
[#itertools-repeat]_
parmap
aims to overcome this limitations in the simplest possible way.
Additional features in parmap:
- Create a pool for parallel computation automatically if possible.
- ``parmap.map(..., ..., pm_parallel=False)`` # disables parallelization
- ``parmap.map(..., ..., pm_processes=4)`` # use 4 parallel processes
- ``parmap.map(..., ..., pm_pbar=True)`` # show a progress bar (requires tqdm)
- ``parmap.map(..., ..., pm_pool=multiprocessing.Pool())`` # use an existing
pool, in this case parmap will not close the pool.
- ``parmap.map(..., ..., pm_chunksize=3)`` # size of chunks (see
multiprocessing.Pool().map)
Limitations:
-------------
``parmap.map()`` and ``parmap.starmap()`` (and their async versions) have their own
arguments (``pm_parallel``, ``pm_pbar``...). Those arguments are never passed
to the underlying function. In the following example, ``myfun`` will receive
``myargument``, but not ``pm_parallel``. Do not write functions that require
keyword arguments starting with ``pm_``, as ``parmap`` may need them in the future.
::
parmap.map(myfun, mylist, pm_parallel=True, myargument=False)
Additionally, there are other keyword arguments that should be avoided in the
functions you write, because of parmap backwards compatibility reasons. The list
of conflicting arguments is: ``parallel``, ``chunksize``, ``pool``,
``processes``, ``callback``, ``error_callback`` and ``parmap_progress``.
Acknowledgments:
----------------
This package started after `this question <https://stackoverflow.com/q/5442910/446149>`__,
when I offered this `answer <http://stackoverflow.com/a/21292849/446149>`__,
taking the suggestions of J.F. Sebastian for his `answer <http://stackoverflow.com/a/5443941/446149>`__
Known works using parmap
---------------------------
- Davide Gerosa, Michael Kesden, "PRECESSION. Dynamics of spinning black-hole
binaries with python." `arXiv:1605.01067 <https://arxiv.org/abs/1605.01067>`__, 2016
- Thibault de Boissiere, `Implementation of Deep learning papers <https://github.com/tdeboissiere/DeepLearningImplementations>`__, 2017
- Wasserstein Generative Adversarial Networks `arXiv:1701.07875 <https://arxiv.org/abs/1701.07875>`__
- pix2pix `arXiv:1611.07004 <https://arxiv.org/abs/1611.07004>`__
- Improved Techniques for Training Generative Adversarial Networks `arXiv:1606.03498 <https://arxiv.org/abs/1606.03498>`__
- Colorful Image Colorization `arXiv:1603.08511 <https://arxiv.org/abs/1603.08511>`__
- Deep Feature Interpolation for Image Content Changes `arXiv:1611.05507 <https://arxiv.org/abs/1611.05507>`__
- InfoGAN `arXiv:1606.03657 <https://arxiv.org/abs/1606.03657>`__
- Geoscience Australia, `SIFRA, a System for Infrastructure Facility Resilience Analysis <https://github.com/GeoscienceAustralia/sifra>`__, 2017
- André F. Rendeiro, Christian Schmidl, Jonathan C. Strefford, Renata Walewska, Zadie Davis, Matthias Farlik, David Oscier, Christoph Bock "Chromatin accessibility maps of chronic lymphocytic leukemia identify subtype-specific epigenome signatures and transcription regulatory networks" Nat. Commun. 7:11938 doi: 10.1038/ncomms11938 (2016). `Paper <https://doi.org/10.5281/zenodo.231352>`__, `Code <https://github.com/epigen/cll-chromatin>`__
References
-----------
.. [#builtin-map] http://docs.python.org/dev/library/functions.html#map
.. [#multiproc-starmap] http://docs.python.org/dev/library/multiprocessing.html#multiprocessing.pool.Pool.starmap
.. [#multiproc-map] http://docs.python.org/dev/library/multiprocessing.html#multiprocessing.pool.Pool.map
.. [#itertools-repeat] http://docs.python.org/dev/library/itertools.html#itertools.repeat