Research
Security News
Quasar RAT Disguised as an npm Package for Detecting Vulnerabilities in Ethereum Smart Contracts
Socket researchers uncover a malicious npm package posing as a tool for detecting vulnerabilities in Etherium smart contracts.
passagemath: Vectors, matrices, tensors, vector spaces, affine spaces, modules and algebras, additive groups, quadratic forms, homology, coding theory, matroids
"Creating a Viable Open Source Alternative to Magma, Maple, Mathematica, and MATLAB"
Copyright (C) 2005-2024 The Sage Development Team
SageMath fully supports all major Linux distributions, recent versions of macOS, and Windows (Windows Subsystem for Linux).
See https://doc.sagemath.org/html/en/installation/index.html for general installation instructions.
This pip-installable source distribution sagemath-modules
is a distribution of a part of the Sage Library. It provides a small subset of the modules of the Sage library ("sagelib", sagemath-standard
).
Vectors, Vector Spaces, Modules <https://doc.sagemath.org/html/en/reference/modules/index.html>
_
Matrices and Spaces of Matrices <https://doc.sagemath.org/html/en/reference/matrices/index.html>
_
Fields of real and complex numbers in arbitrary precision floating point arithmetic (using MPFR, GSL, mpmath, MPC)
Free Modules with Combinatorial Bases <https://doc.sagemath.org/html/en/reference/combinat/sage/combinat/free_module.html>
_
Tensor Modules <https://doc.sagemath.org/html/en/reference/tensor_free_modules/index.html>
_
Additive Abelian Groups <https://doc.sagemath.org/html/en/reference/groups/sage/groups/additive_abelian/additive_abelian_group.html>
_
Matrix and Affine Groups <https://doc.sagemath.org/html/en/reference/groups/index.html#matrix-and-affine-groups>
_
Root Systems <https://doc.sagemath.org/html/en/reference/combinat/sage/combinat/root_system/all.html#sage-combinat-root-system-all>
_
Quadratic Forms <https://doc.sagemath.org/html/en/reference/quadratic_forms/index.html>
_
Ring Extensions <https://doc.sagemath.org/html/en/reference/rings/sage/rings/ring_extension.html>
_ and Derivations <https://doc.sagemath.org/html/en/reference/rings/sage/rings/derivation.html>
_
Clifford, Exterior <https://doc.sagemath.org/html/en/reference/algebras/sage/algebras/clifford_algebra.html>
, and Weyl Algebras <https://doc.sagemath.org/html/en/reference/algebras/sage/algebras/weyl_algebra.html>
Chain Complexes, Homology <https://doc.sagemath.org/html/en/reference/homology/index.html>
, Free Resolutions <https://doc.sagemath.org/html/en/reference/resolutions/index.html>
Matroid Theory <https://doc.sagemath.org/html/en/reference/matroids/index.html>
_
Coding Theory <https://doc.sagemath.org/html/en/reference/coding/index.html>
_
Cryptography <https://doc.sagemath.org/html/en/reference/cryptography/index.html>
_
Probability Spaces and Distributions <https://doc.sagemath.org/html/en/reference/probability/index.html>
, Statistics <https://doc.sagemath.org/html/en/reference/stats/index.html>
A quick way to try it out interactively::
$ pipx run --pip-args="--prefer-binary" --spec "passagemath-modules[test]" ipython
In [1]: from sage.all__sagemath_modules import *
In [2]: M = matroids.Wheel(5); M
Out[2]: Wheel(5): Regular matroid of rank 5 on 10 elements with 121 bases
In [3]: M.representation()
Out[3]:
[ 1 0 0 0 0 1 0 0 0 -1]
[ 0 1 0 0 0 -1 1 0 0 0]
[ 0 0 1 0 0 0 -1 1 0 0]
[ 0 0 0 1 0 0 0 -1 1 0]
[ 0 0 0 0 1 0 0 0 -1 1]
pip install "sagemath-modules[RDF,CDF]"
Linear algebra over fields of real and complex numbers using NumPy
pip install "sagemath-modules[RBF,CBF]"
Linear algebra over fields of real and complex numbers with ball arithmetic using FLINT/arb
pip install "sagemath-modules[GF,GF2,GF2e,GFpn]"
Linear algebra over finite fields (various implementations)
pip install "sagemath-modules[QQbar,NumberField,CyclotomicField]"
Linear algebra over the algebraic numbers or number fields
pip install "sagemath-modules[flint,fpylll,linbox]"
Lattice basis reduction (LLL, BKZ)::
$ pipx run --pip-args="--prefer-binary" --spec "passagemath-modules[flint,fpylll,linbox,test]" ipython
In [1]: from sage.all__sagemath_modules import *
In [2]: M = matrix(ZZ, [[1,2,3],[31,41,51],[101,201,301]])
In [3]: A = M.LLL(); A
Out[3]:
[ 0 0 0]
[-1 0 1]
[ 1 1 1]
pip install "sagemath-modules[padics]"
Linear algebra over p-adic rings and fields
pip install "sagemath-modules[combinat]"
Modules and algebras with combinatorial bases; algebraic combinatorics
pip install "sagemath-modules[invariant]"
Submodules invariant under group actions
pip install "sagemath-modules[standard]"
All related features as in a standard installation of SageMath
::
$ git clone --origin passagemath https://github.com/passagemath/passagemath.git
$ cd passagemath
passagemath $ ./bootstrap
passagemath $ python3 -m venv modules-venv
passagemath $ source modules-venv/bin/activate
(modules-venv) passagemath $ pip install -v -e pkgs/sagemath-modules
FAQs
passagemath: Vectors, matrices, tensors, vector spaces, affine spaces, modules and algebras, additive groups, quadratic forms, homology, coding theory, matroids
We found that passagemath-modules demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Research
Security News
Socket researchers uncover a malicious npm package posing as a tool for detecting vulnerabilities in Etherium smart contracts.
Security News
Research
A supply chain attack on Rspack's npm packages injected cryptomining malware, potentially impacting thousands of developers.
Research
Security News
Socket researchers discovered a malware campaign on npm delivering the Skuld infostealer via typosquatted packages, exposing sensitive data.