Perdido Geoparser Python library

Installation
To install the latest stable version, you can use:
pip install --upgrade perdido
Quick start
Geoparsing

Import
from perdido.geoparser import Geoparser
Run geoparser
text = "J'ai rendez-vous proche de la place Bellecour, de la place des Célestins, au sud de la fontaine des Jacobins et près du pont Bonaparte."
geoparser = Geoparser()
doc = geoparser(text)
Some parameters can be set when initializing the Geoparser
object:
version
: Standard (default), Encyclopediepos_tagger
: spacy (default), stanza, and treetagger
Get tokens
- Access token attributes (text, lemma and UPOS part-of-speech tag):
for token in doc:
print(f'{token.text}\tlemma: {token.lemma}\tpos: {token.pos}')
for token in doc:
print(token.iob_format())
for token in doc:
print(token.tsv_format())
Print the XML-TEI output
print(doc.tei)
Print the XML-TEI output with XML syntax highlighting
from display_xml import XML
XML(doc.tei, style='lovelace')
Print the GeoJSON output
print(doc.geojson)
Get the list of named entities
for entity in doc.named_entities:
print(f'entity: {entity.text}\ttag: {entity.tag}')
if entity.tag == 'place':
for t in entity.toponym_candidates:
print(f' latitude: {t.lat}\tlongitude: {t.lng}\tsource {t.source}')
Get the list of nested named entities
for nested_entity in doc.nested_named_entities:
print(f'entity: {nested_entity.text}\ttag: {nested_entity.tag}')
if nested_entity.tag == 'place':
for t in nested_entity.toponym_candidates:
print(f' latitude: {t.lat}\tlongitude: {t.lng}\tsource {t.source}')
Get the list of spatial relations
for sp_relation in doc.sp_relations:
print(f'spatial relation: {sp_relation.text}\ttag: {sp_relation.tag}')
Shows named entities and nested named entities using the displacy library from spaCy
displacy.render(doc.to_spacy_doc(), style="ent", jupyter=True)
displacy.render(doc.to_spacy_doc(), style="span", jupyter=True)
Display the map (using folium library)
doc.get_folium_map()
Saving results
doc.to_xml('filename.xml')
doc.to_geojson('filename.geojson')
doc.to_iob('filename.tsv')
doc.to_csv('filename.csv')
Geocoding

Import
from perdido.geocoder import Geocoder
Geocode a single place name
geocoder = Geocoder()
doc = geocoder('Lyon')
Some parameters can be set when initializing the Geocoder
object:
sources
:max_rows
:country_code
:bbox
:
Geocode a list of place names
geocoder = Geocoder()
doc = geocoder(['Lyon', 'la place des Célestins', 'la fontaine des Jacobins'])
Get the geojson result
print(doc.geojson)
Get the list of toponym candidates
for t in doc.toponyms:
print(f'lat: {t.lat}\tlng: {t.lng}\tsource {t.source}\tsourceName {t.source_name}')
Get the toponym candidates as a GeoDataframe
print(doc.to_geodataframe())
Perdido Geoparser REST APIs
http://choucas.univ-pau.fr/docs#
Example: call REST API in Python
import requests
url = 'http://choucas.univ-pau.fr/PERDIDO/api/'
service = 'geoparsing'
data = {'content': 'Je visite la ville de Lyon, Annecy et le Mont-Blanc.'}
parameters = {'api_key': 'demo'}
r = requests.post(url+service, params=parameters, json=data)
print(r.text)
Tutorials
Cite this work
Moncla, L. and Gaio, M. (2023). Perdido: Python library for geoparsing and geocoding French texts. In proceedings of the First International Workshop on Geographic Information Extraction from Texts (GeoExT'23), ECIR Conference, Dublin, Ireland.
Acknowledgements
Perdido
is an active project still under developpement.
This work was partially supported by the following projects: